Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 169797 by mathocean1 last updated on 09/May/22

Calculate for n∈ N^∗ :∫_0 ^(+∞) (dt/((t^2 +1)^n ))  (Notice: 1=(1+t^2 )−t^2 )

CalculatefornN:0+dt(t2+1)n(Notice:1=(1+t2)t2)

Answered by floor(10²Eta[1]) last updated on 09/May/22

t=tgθ⇒dt=sec^2 θdθ  ∫_0 ^(π/2) ((sec^2 dθ)/(sec^(2n) θ))=∫_0 ^(π/2) cos^(2n−2) θdθ, use reduction formula.

t=tgθdt=sec2θdθ0π/2sec2dθsec2nθ=0π/2cos2n2θdθ,usereductionformula.

Answered by Mathspace last updated on 09/May/22

u_n =∫_0 ^∞  (dt/((t^2 +1)^n )) ⇒  we have B(x,y)=∫_0 ^∞  (t^(x−1) /((1+t)^(x+y) ))dt  so∫_0 ^∞   (dt/((1+t^2 )^n ))=_(t=(√x))   (1/2)∫_0 ^∞  (x^(−(1/2)) /((1+x)^n ))dx  =(1/2)∫_0 ^∞   (t^((1/2)−1) /((1+t)^(n+(1/2)−(1/2)) ))dt  =(1/2)∫_0 ^∞   (t^((1/2)−1) /((1+t)^((1/2)+n−(1/2)) ))dt  =(1/2)B((1/2),n−(1/2))  =(1/2)×((Γ((1/2)).Γ(n−(1/2)))/(Γ(n)))  =((√π)/(2(n−1)!))Γ(n−(1/2))  =((√π)/2)×(((n−(3/2))!)/((n−1)!))  (n>0)

un=0dt(t2+1)nwehaveB(x,y)=0tx1(1+t)x+ydtso0dt(1+t2)n=t=x120x12(1+x)ndx=120t121(1+t)n+1212dt=120t121(1+t)12+n12dt=12B(12,n12)=12×Γ(12).Γ(n12)Γ(n)=π2(n1)!Γ(n12)=π2×(n32)!(n1)!(n>0)

Answered by Mathspace last updated on 09/May/22

residus method  ∫_0 ^∞   (dt/((t^2 +1)^n ))=(1/2)∫_(−∞) ^(+∞) (dt/((t^2 +1)^n ))  ϕ(z)=(1/((z^2 +1)^n ))⇒ϕ(z)=(1/((z−i)^n (z+i)^n ))  ∫_R ϕdz=2iπ Res(ϕ,i)  Res(ϕ,i)=lim_(z→i) (1/((n−1)!)){(z−i)^n ϕ(z)}^((n−1))   =lim_(z→i) (1/((n−1)!)){(z+i)^(−n) }^((n−1))   we have (z+i)^p }^((1)) =p(z+i)^(p−1)   ...(z+i)^p }^((k)) =p(p−1)...(p−k+1)(z+i)^(p−k)   (z+i)^(−n) }^((n−1)) =(−n)(−n−1)...(−n−n+1+1)(z+i)^(−n−n+1)   =(−1)^(n−1) n(n+1)....(2n+2)(z+i)^(−2n+1)   .....

residusmethod0dt(t2+1)n=12+dt(t2+1)nφ(z)=1(z2+1)nφ(z)=1(zi)n(z+i)nRφdz=2iπRes(φ,i)Res(φ,i)=limzi1(n1)!{(zi)nφ(z)}(n1)=limzi1(n1)!{(z+i)n}(n1)wehave(z+i)p}(1)=p(z+i)p1...(z+i)p}(k)=p(p1)...(pk+1)(z+i)pk(z+i)n}(n1)=(n)(n1)...(nn+1+1)(z+i)nn+1=(1)n1n(n+1)....(2n+2)(z+i)2n+1.....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com