All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 169797 by mathocean1 last updated on 09/May/22
Calculateforn∈N∗:∫0+∞dt(t2+1)n(Notice:1=(1+t2)−t2)
Answered by floor(10²Eta[1]) last updated on 09/May/22
t=tgθ⇒dt=sec2θdθ∫0π/2sec2dθsec2nθ=∫0π/2cos2n−2θdθ,usereductionformula.
Answered by Mathspace last updated on 09/May/22
un=∫0∞dt(t2+1)n⇒wehaveB(x,y)=∫0∞tx−1(1+t)x+ydtso∫0∞dt(1+t2)n=t=x12∫0∞x−12(1+x)ndx=12∫0∞t12−1(1+t)n+12−12dt=12∫0∞t12−1(1+t)12+n−12dt=12B(12,n−12)=12×Γ(12).Γ(n−12)Γ(n)=π2(n−1)!Γ(n−12)=π2×(n−32)!(n−1)!(n>0)
residusmethod∫0∞dt(t2+1)n=12∫−∞+∞dt(t2+1)nφ(z)=1(z2+1)n⇒φ(z)=1(z−i)n(z+i)n∫Rφdz=2iπRes(φ,i)Res(φ,i)=limz→i1(n−1)!{(z−i)nφ(z)}(n−1)=limz→i1(n−1)!{(z+i)−n}(n−1)wehave(z+i)p}(1)=p(z+i)p−1...(z+i)p}(k)=p(p−1)...(p−k+1)(z+i)p−k(z+i)−n}(n−1)=(−n)(−n−1)...(−n−n+1+1)(z+i)−n−n+1=(−1)n−1n(n+1)....(2n+2)(z+i)−2n+1.....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com