Question and Answers Forum

All Question   Topic List

Question Number 169802 by MathsFan last updated on 09/May/22

Entry to a certain University is determined by a national test. The scores on this test are normally distributed with a mean of 500 and a standard deviation of 100. a. Find the probability that a student’s total scores will be i. Greater than 850 ii. Less than 550 iii. Between 300 and 490\n

Answered by shikaridwan last updated on 10/May/22

f(x)=(1/( (√(2π))σ))e^(−(((((x−μ)/σ))^2 )/2))   here σ=100    μ=500  P(X>850)=(1/(100(√(2π))))∫_(850 ) ^∞ exp(−(((((x−500)/(100)))^2 )/2))dx  =(1/( (√(2π))))∫_(3.5) ^∞ exp(−t^2 /2)dt    t=((x−500)/(100))  =(1/( (√(2π))))∫_0 ^∞ exp(−t^2 /2)dt−(1/( (√(2π))))∫_0 ^(3.5) e^(−t^2 /2) dt  =(1/2)−(1/( (√π)))∫_0 ^((√2)×3.5) e^(−u^2 ) du  =(1/2)(1−erf((√2)×3.5))  P(X<550)=∫_(−∞) ^(550) f(x)dx  P(300<X<490)=∫_(300) ^(490) f(x)dx

f(x)=12πσe(xμσ)22 hereσ=100μ=500 P(X>850)=11002π850exp((x500100)22)dx =12π3.5exp(t2/2)dtt=x500100 =12π0exp(t2/2)dt12π03.5et2/2dt =121π02×3.5eu2du =12(1erf(2×3.5)) P(X<550)=550f(x)dx P(300<X<490)=300490f(x)dx

Commented byMathsFan last updated on 10/May/22

wow  thank you sir

wow thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com