Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 169865 by mr W last updated on 11/May/22

x+y=−2  xy=4  find x^8 +8y^5 =?

x+y=2xy=4findx8+8y5=?

Commented by cortano1 last updated on 11/May/22

 y=−x−2 ∧ x(−x−2)=4  ⇒x^2 +2x+4=0  ⇒(x+1)^2 +3 = 0  ⇒x=−1± i(√3)  ⇒x=2 (−(1/2) ± ((√3)/2) i)  ⇒x=−2((1/2) ∓ ((√3)/2) i)=−2e^(± i(π/3))   ⇒x^8  = 256 (cos ((8π)/3)+i sin ((8π)/3))  ⇒x^8  = 256 (cos ((2π)/3) + i sin ((2π)/3))  ⇒x^8  = 256 (−(1/2)+(1/2)(√3) i)=−128+128(√3) i  ⇒y=−x−2=1∓ i(√3) −2=−1∓ i(√3)  ⇒y=−2((1/2)±((√3)/2) i)=−2e^(±i (π/3))   ⇒y^5  = −32(cos ((5π)/3) ± i sin ((5π)/3))  ⇒y^5 =−32(−cos ((2π)/3) ∓ i sin ((2π)/3))  ⇒y^5 = −32((1/2) ∓ ((√3)/2) i)=−16 ± 16(√3) i  ⇒8y^5  = −128 ±128(√3) i    { ((x^8 +8y^5  = −256+256(√3) i)),((x^8 +8y^5  = −256)) :}

y=x2x(x2)=4x2+2x+4=0(x+1)2+3=0x=1±i3x=2(12±32i)x=2(1232i)=2e±iπ3x8=256(cos8π3+isin8π3)x8=256(cos2π3+isin2π3)x8=256(12+123i)=128+1283iy=x2=1i32=1i3y=2(12±32i)=2e±iπ3y5=32(cos5π3±isin5π3)y5=32(cos2π3isin2π3)y5=32(1232i)=16±163i8y5=128±1283i{x8+8y5=256+2563ix8+8y5=256

Commented by infinityaction last updated on 13/May/22

           2x^8  + 8(2y^5 ) = 2p(let)           (x^8  + y^8  + x^8  − y^8 ) _(A) + 8(y^5  + x^5  + y^5 − x^5 )_(B)   =  2p      2p  =   A + 8B     A = x^8 +y^(8 ) +(x^4 +y^4 )(x^2 +y^2 )(x+y)(x−y)            ∴ x+y =  −2    and     xy  =  4                 x^2  + y^2   = 4−2xy = −4                  x^(4 ) + y^4   =  −16                 x^8  + y^8  =  −256           A  = −256 −128(x−y)            B = y^5 +x^5  +y^5  −x^5   B=(x^4 +y^4 )(x+y)−xy^4 −yx^4 +(x^4 +y^4 )(y−x)−yx^4 +xy^4      B= 32−4(x^3 +y^3 )−16(y−x)−xy(x^3 −y^3 )  B = 32−4(x+y)(x^2 +y^2 −xy)+16(x−y)+4(y−x)(y^2 +x^2 +xy)  B= 32+4(−2)×8+16(x−y)+4(y−x)(−4+4)           B = −32 + 16(x−y)     2p = −256−128(x−y)+8{−32 +16(x−y)}     2p = −256−128(x−y)−256+128(x−y)                   2p = −512                 p  =  −256

2x8+8(2y5)=2p(let)(x8+y8+x8y8)A+8(y5+x5+y5x5)B=2p2p=A+8BA=x8+y8+(x4+y4)(x2+y2)(x+y)(xy)x+y=2andxy=4x2+y2=42xy=4x4+y4=16x8+y8=256A=256128(xy)B=y5+x5+y5x5B=(x4+y4)(x+y)xy4yx4+(x4+y4)(yx)yx4+xy4B=324(x3+y3)16(yx)xy(x3y3)B=324(x+y)(x2+y2xy)+16(xy)+4(yx)(y2+x2+xy)B=32+4(2)×8+16(xy)+4(yx)(4+4)B=32+16(xy)2p=256128(xy)+8{32+16(xy)}2p=256128(xy)256+128(xy)2p=512p=256

Answered by Rasheed.Sindhi last updated on 11/May/22

 {: ((x+y=−2)),((xy=4)) }x=−1±i(√3)  x(−x−2)=4  x^2 +2x+4=0,( Similarly y^2 +2y+4=0)  x^2 =−2x−4 ,   (y^2 =−2y−4)  •x^8 =(x^2 )^4 =(−2x−4)^4 =2^4 (x+2)^4   =16(x^2 +4x+4)^2 =16(−2x−4+4x+4)^2 =  =16(2x)^2 =64(−2x−4)=−128(x+2)  =−128(−1±i(√3)+2)=−128(1±i(√3) )  •8y^5 = 8(y^2 )^2 y=8y(−2y−4)^2     =16y(y^2 +4y+4)=16y(−2y−4+4y+4)     =16y(2y)    =32y^2 =32(−2y−4)=−64(y+2)    =64(−x−2+2)=−64x=−64(−1±i(√3))  •x^8 +8y^5         =−128(1±i(√3) )+−64(−1±i(√3))       =−128+64∓128i(√3) ∓64i(√3)       =−64∓192i(√3) ??

x+y=2xy=4}x=1±i3x(x2)=4x2+2x+4=0,(Similarlyy2+2y+4=0)x2=2x4,(y2=2y4)x8=(x2)4=(2x4)4=24(x+2)4=16(x2+4x+4)2=16(2x4+4x+4)2==16(2x)2=64(2x4)=128(x+2)=128(1±i3+2)=128(1±i3)8y5=8(y2)2y=8y(2y4)2=16y(y2+4y+4)=16y(2y4+4y+4)=16y(2y)=32y2=32(2y4)=64(y+2)=64(x2+2)=64x=64(1±i3)x8+8y5=128(1±i3)+64(1±i3)=128+64128i364i3=64192i3??

Commented by greougoury555 last updated on 11/May/22

16(x^2 −4x+4)^2 =16(−6x)^2 = 16×36x^2

16(x24x+4)2=16(6x)2=16×36x2

Commented by Rasheed.Sindhi last updated on 11/May/22

Thanks sir for pointing out my mistake.

Thankssirforpointingoutmymistake.

Answered by Rasheed.Sindhi last updated on 13/May/22

 { ((x+y=−2)),((xy=4)) :} ;x^8 +8y^5 =?   { ((x+y=−2⇒x=−y−2)),((xy=4⇒y(−y−2)=4=y^2 +2y+4=0⇒y^2 =−2y−4)) :}  x^8 +8y^5 =(−y−2)^8 +8y^5   =(y^2 +4y+4)^4 +8y(y^2 )^2   =(−2y−4+4y+4)^4 +8y(−2y−4)^2   =(2y)^4 +32y(y+2)^2   =16(y^2 )^2 +32y(y^2 +4y+4)  =16(−2y−4)^2 +32y(−2y−4+4y+4)  =64(y^2 +4y+4)+32y(2y)  =64(−2y−4+4y+4)+64y^2   =64(2y)+64(−2y−4)  =128y−128y−256  =−256

{x+y=2xy=4;x8+8y5=?{x+y=2x=y2xy=4y(y2)=4=y2+2y+4=0y2=2y4x8+8y5=(y2)8+8y5=(y2+4y+4)4+8y(y2)2=(2y4+4y+4)4+8y(2y4)2=(2y)4+32y(y+2)2=16(y2)2+32y(y2+4y+4)=16(2y4)2+32y(2y4+4y+4)=64(y2+4y+4)+32y(2y)=64(2y4+4y+4)+64y2=64(2y)+64(2y4)=128y128y256=256

Answered by mr W last updated on 13/May/22

x,y are roots of z^2 +2z+4=0.  z^2 =−2z−4  z^3 =−2z^2 −4z=−2(−2z−4)−4z=8  i.e. x^3 =y^3 =8    x^8 +8y^5   =x^3 x^3 x^2 +8y^3 y^2   =8×8x^2 +8×8y^2   =64(x^2 +y^2 )  =64[(x+y)^2 −2xy]  =64[(−2)^2 −2×4]  =−64×4  =−256 ✓

x,yarerootsofz2+2z+4=0.z2=2z4z3=2z24z=2(2z4)4z=8i.e.x3=y3=8x8+8y5=x3x3x2+8y3y2=8×8x2+8×8y2=64(x2+y2)=64[(x+y)22xy]=64[(2)22×4]=64×4=256

Commented by infinityaction last updated on 13/May/22

great sir very nice

greatsirverynice

Commented by peter frank last updated on 13/May/22

short and clear

shortandclear

Terms of Service

Privacy Policy

Contact: info@tinkutara.com