Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 170005 by ajfour last updated on 13/May/22

Commented by ajfour last updated on 14/May/22

A moves in circle with   speed u, while B down the  vertical diameter with speed  ucos θ, where θ is shown,  what to mean. Given initial  positions, if they collide in  P(0,a)  , find b/a.

$${A}\:{moves}\:{in}\:{circle}\:{with}\: \\ $$$${speed}\:{u},\:{while}\:{B}\:{down}\:{the} \\ $$$${vertical}\:{diameter}\:{with}\:{speed} \\ $$$${u}\mathrm{cos}\:\theta,\:{where}\:\theta\:{is}\:{shown}, \\ $$$${what}\:{to}\:{mean}.\:{Given}\:{initial} \\ $$$${positions},\:{if}\:{they}\:{collide}\:{in} \\ $$$${P}\left(\mathrm{0},{a}\right)\:\:,\:{find}\:{b}/{a}. \\ $$

Commented by mr W last updated on 14/May/22

((b−a)/(u cos θ))=((πa)/(2u))  (((b−a)(√(b^2 +a^2 )))/b)=((πa)/2)  let λ=(b/a)  (λ−1)(√(1+λ^2 ))=((πλ)/2)  ⇒λ≈2.4547

$$\frac{{b}−{a}}{{u}\:\mathrm{cos}\:\theta}=\frac{\pi{a}}{\mathrm{2}{u}} \\ $$$$\frac{\left({b}−{a}\right)\sqrt{{b}^{\mathrm{2}} +{a}^{\mathrm{2}} }}{{b}}=\frac{\pi{a}}{\mathrm{2}} \\ $$$${let}\:\lambda=\frac{{b}}{{a}} \\ $$$$\left(\lambda−\mathrm{1}\right)\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }=\frac{\pi\lambda}{\mathrm{2}} \\ $$$$\Rightarrow\lambda\approx\mathrm{2}.\mathrm{4547} \\ $$

Commented by ajfour last updated on 14/May/22

θ is variable, along   instantaeous BA; sir.

$$\theta\:{is}\:{variable},\:{along}\: \\ $$$${instantaeous}\:{BA};\:{sir}. \\ $$

Answered by ajfour last updated on 14/May/22

let at time t,  A(p,q)    ∀  p^2 +q^2 =a^2   B(0,y)  (ds/dt)=u  tan θ=(p/(y−q))  ucos θ=−(dy/dt)=−((udy)/ds)  (1/( (√(1+(((acos φ)/(y−asin φ)))^2 ))))=−(dy/(adφ))  ⇒  a^2 ((dφ/dy))^2 =1+(((acos φ)/(y−asin φ)))^2   .......

$${let}\:{at}\:{time}\:{t}, \\ $$$${A}\left({p},{q}\right)\:\:\:\:\forall\:\:{p}^{\mathrm{2}} +{q}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$${B}\left(\mathrm{0},{y}\right) \\ $$$$\frac{{ds}}{{dt}}={u} \\ $$$$\mathrm{tan}\:\theta=\frac{{p}}{{y}−{q}} \\ $$$${u}\mathrm{cos}\:\theta=−\frac{{dy}}{{dt}}=−\frac{{udy}}{{ds}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\left(\frac{{a}\mathrm{cos}\:\phi}{{y}−{a}\mathrm{sin}\:\phi}\right)^{\mathrm{2}} }}=−\frac{{dy}}{{ad}\phi} \\ $$$$\Rightarrow\:\:{a}^{\mathrm{2}} \left(\frac{{d}\phi}{{dy}}\right)^{\mathrm{2}} =\mathrm{1}+\left(\frac{{a}\mathrm{cos}\:\phi}{{y}−{a}\mathrm{sin}\:\phi}\right)^{\mathrm{2}} \\ $$$$....... \\ $$$$ \\ $$

Answered by mr W last updated on 14/May/22

Commented by mr W last updated on 14/May/22

at time t:  P at ϕ=((ut)/a)=ωt with ω=(u/a)  Q(0,h)  tan θ=((a cos ϕ)/(h−a sin ϕ))=((a cos ωt)/(h−a sin ωt))  (dh/dt)=−u cos θ=− (u/( (√(1+(((a cos ωt)/(h−a sin ωt)))^2 ))))  let ξ=(h/a)  (dξ/dt)+ (ω/( (√(1+(((cos ωt)/(ξ−sin ωt)))^2 ))))=0  or  (dξ/dϕ)+ (1/( (√(1+(((cos ϕ)/(ξ−sin ϕ)))^2 ))))=0  ξ(ϕ=0)=(b/a)=λ  ξ(ϕ=(π/2))=1  ....

$${at}\:{time}\:{t}: \\ $$$${P}\:{at}\:\varphi=\frac{{ut}}{{a}}=\omega{t}\:{with}\:\omega=\frac{{u}}{{a}} \\ $$$${Q}\left(\mathrm{0},{h}\right) \\ $$$$\mathrm{tan}\:\theta=\frac{{a}\:\mathrm{cos}\:\varphi}{{h}−{a}\:\mathrm{sin}\:\varphi}=\frac{{a}\:\mathrm{cos}\:\omega{t}}{{h}−{a}\:\mathrm{sin}\:\omega{t}} \\ $$$$\frac{{dh}}{{dt}}=−{u}\:\mathrm{cos}\:\theta=−\:\frac{{u}}{\:\sqrt{\mathrm{1}+\left(\frac{{a}\:\mathrm{cos}\:\omega{t}}{{h}−{a}\:\mathrm{sin}\:\omega{t}}\right)^{\mathrm{2}} }} \\ $$$${let}\:\xi=\frac{{h}}{{a}} \\ $$$$\frac{{d}\xi}{{dt}}+\:\frac{\omega}{\:\sqrt{\mathrm{1}+\left(\frac{\mathrm{cos}\:\omega{t}}{\xi−\mathrm{sin}\:\omega{t}}\right)^{\mathrm{2}} }}=\mathrm{0} \\ $$$${or} \\ $$$$\frac{{d}\xi}{{d}\varphi}+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\left(\frac{\mathrm{cos}\:\varphi}{\xi−\mathrm{sin}\:\varphi}\right)^{\mathrm{2}} }}=\mathrm{0} \\ $$$$\xi\left(\varphi=\mathrm{0}\right)=\frac{{b}}{{a}}=\lambda \\ $$$$\xi\left(\varphi=\frac{\pi}{\mathrm{2}}\right)=\mathrm{1} \\ $$$$.... \\ $$

Commented by ajfour last updated on 14/May/22

thanks sir, difficult d.e. !

$${thanks}\:{sir},\:{difficult}\:{d}.{e}.\:! \\ $$

Commented by mr W last updated on 14/May/22

yes! i don′t know how to solve.

$${yes}!\:{i}\:{don}'{t}\:{know}\:{how}\:{to}\:{solve}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com