Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 170018 by cortano1 last updated on 14/May/22

      lim_(x→(π/2)) (1+sin (π−2x))^(5/(sin (x−(π/2)))) .ln (4.((cos (π−2x)−1)/(((π/2)−x)^2 )))=?

$$\:\:\:\:\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{sin}\:\left(\pi−\mathrm{2}{x}\right)\right)^{\frac{\mathrm{5}}{\mathrm{sin}\:\left({x}−\frac{\pi}{\mathrm{2}}\right)}} .\mathrm{ln}\:\left(\mathrm{4}.\frac{\mathrm{cos}\:\left(\pi−\mathrm{2}{x}\right)−\mathrm{1}}{\left(\frac{\pi}{\mathrm{2}}−{x}\right)^{\mathrm{2}} }\right)=? \\ $$

Answered by Mathspace last updated on 14/May/22

u(x)=(1+sin(π−2x))^(5/(sin(x−(π/2))))   and v(x)=ln(4.((cos(π−2x)−1)/(((π/2)−x)^2 ))  ⇒u(x)=(1+sin(2x))^(5/(−cosx))   =e^(−(5/(cosx))ln(1+sin(2x))   ch.x−(π/2)=t give  u(x)=u((π/2)+t)=e^(−(5/(−sint))ln(1−sin(2t)))   sint∼t  and sin(2t)∼2t ⇒  ln(1−sin(2t))∼ln(1−2t)∼−2t⇒  (5/(sint))ln(1−sin(2t)∼(5/t)(−2t)=−10 ⇒  lim u(x)=e^(−10)   v(x)=ln(4.((−cos(2x)−1)/(((π/2)−x)^2 )))(x−(π/2)=t)  =ln(4×((−cos(2((π/2)+t)−1)/t^2 ))  =ln(−4.((−cos(2t)+1)/t^2 ))  =ln((4/t^2 )(cos(2t)−1))  but cos(2t)−1<0  error at the question!...  cos(2t)∼1−2t^2  ⇒1−cos(2t)

$${u}\left({x}\right)=\left(\mathrm{1}+{sin}\left(\pi−\mathrm{2}{x}\right)\right)^{\frac{\mathrm{5}}{{sin}\left({x}−\frac{\pi}{\mathrm{2}}\right)}} \\ $$$${and}\:{v}\left({x}\right)={ln}\left(\mathrm{4}.\frac{{cos}\left(\pi−\mathrm{2}{x}\right)−\mathrm{1}}{\left(\frac{\pi}{\mathrm{2}}−{x}\right)^{\mathrm{2}} }\right. \\ $$$$\Rightarrow{u}\left({x}\right)=\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\right)^{\frac{\mathrm{5}}{−{cosx}}} \\ $$$$={e}^{−\frac{\mathrm{5}}{{cosx}}{ln}\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\right.} \\ $$$${ch}.{x}−\frac{\pi}{\mathrm{2}}={t}\:{give} \\ $$$${u}\left({x}\right)={u}\left(\frac{\pi}{\mathrm{2}}+{t}\right)={e}^{−\frac{\mathrm{5}}{−{sint}}{ln}\left(\mathrm{1}−{sin}\left(\mathrm{2}{t}\right)\right)} \\ $$$${sint}\sim{t}\:\:{and}\:{sin}\left(\mathrm{2}{t}\right)\sim\mathrm{2}{t}\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}−{sin}\left(\mathrm{2}{t}\right)\right)\sim{ln}\left(\mathrm{1}−\mathrm{2}{t}\right)\sim−\mathrm{2}{t}\Rightarrow \\ $$$$\frac{\mathrm{5}}{{sint}}{ln}\left(\mathrm{1}−{sin}\left(\mathrm{2}{t}\right)\sim\frac{\mathrm{5}}{{t}}\left(−\mathrm{2}{t}\right)=−\mathrm{10}\:\Rightarrow\right. \\ $$$${lim}\:{u}\left({x}\right)={e}^{−\mathrm{10}} \\ $$$${v}\left({x}\right)={ln}\left(\mathrm{4}.\frac{−{cos}\left(\mathrm{2}{x}\right)−\mathrm{1}}{\left(\frac{\pi}{\mathrm{2}}−{x}\right)^{\mathrm{2}} }\right)\left({x}−\frac{\pi}{\mathrm{2}}={t}\right) \\ $$$$={ln}\left(\mathrm{4}×\frac{−{cos}\left(\mathrm{2}\left(\frac{\pi}{\mathrm{2}}+{t}\right)−\mathrm{1}\right.}{{t}^{\mathrm{2}} }\right) \\ $$$$={ln}\left(−\mathrm{4}.\frac{−{cos}\left(\mathrm{2}{t}\right)+\mathrm{1}}{{t}^{\mathrm{2}} }\right) \\ $$$$={ln}\left(\frac{\mathrm{4}}{{t}^{\mathrm{2}} }\left({cos}\left(\mathrm{2}{t}\right)−\mathrm{1}\right)\right) \\ $$$${but}\:{cos}\left(\mathrm{2}{t}\right)−\mathrm{1}<\mathrm{0}\:\:{error}\:{at}\:{the}\:{question}!... \\ $$$${cos}\left(\mathrm{2}{t}\right)\sim\mathrm{1}−\mathrm{2}{t}^{\mathrm{2}} \:\Rightarrow\mathrm{1}−{cos}\left(\mathrm{2}{t}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com