Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 170110 by mathlove last updated on 16/May/22

prove that  e^(iθ) =cosθ+isinθ

$${prove}\:{that} \\ $$$${e}^{{i}\theta} ={cos}\theta+{isin}\theta \\ $$

Commented by ajfour last updated on 16/May/22

1×e^(iθ) =z is   1 rotated by θ anticlockwise .  hence z=cos θ+isin θ=e^(iθ)   draw a diagram n u know.

$$\mathrm{1}×{e}^{{i}\theta} ={z}\:{is} \\ $$$$\:\mathrm{1}\:{rotated}\:{by}\:\theta\:{anticlockwise}\:. \\ $$$${hence}\:{z}=\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta={e}^{{i}\theta} \\ $$$${draw}\:{a}\:{diagram}\:{n}\:{u}\:{know}. \\ $$

Answered by floor(10²Eta[1]) last updated on 16/May/22

using the mclaurin series:  f(x)=Σ_(n=0) ^∞ ((f^((n)) (0))/(n!))x^n   for e^x , sinx, cosx, we have:  e^x =1+x+(x^2 /(2!))+(x^3 /(3!))+...  sinx=x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))+...  cosx=1−(x^2 /(2!))+(x^4 /(4!))−(x^6 /(6!))+...  ⇒e^(iθ) =1+iθ+(((iθ)^2 )/(2!))+(((iθ)^3 )/(3!))+...  =1+iθ−(θ^2 /(2!))−i(θ^3 /(3!))+(θ^4 /(4!))+((iθ^5 )/(5!))−(θ^6 /(6!))−((iθ^7 )/(7!))+...  =(1−(θ^2 /(2!))+(θ^4 /(4!))−(θ^6 /(6!))+...)+i(θ−(θ^3 /(3!))+(θ^5 /(5!))−(θ^7 /(7!))+...)  =cosθ+isinθ

$$\mathrm{using}\:\mathrm{the}\:\mathrm{mclaurin}\:\mathrm{series}: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right)}{\mathrm{n}!}\mathrm{x}^{\mathrm{n}} \\ $$$$\mathrm{for}\:\mathrm{e}^{\mathrm{x}} ,\:\mathrm{sinx},\:\mathrm{cosx},\:\mathrm{we}\:\mathrm{have}: \\ $$$$\mathrm{e}^{\mathrm{x}} =\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}!}+... \\ $$$$\mathrm{sinx}=\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{\mathrm{x}^{\mathrm{5}} }{\mathrm{5}!}−\frac{\mathrm{x}^{\mathrm{7}} }{\mathrm{7}!}+... \\ $$$$\mathrm{cosx}=\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{4}!}−\frac{\mathrm{x}^{\mathrm{6}} }{\mathrm{6}!}+... \\ $$$$\Rightarrow\mathrm{e}^{\mathrm{i}\theta} =\mathrm{1}+\mathrm{i}\theta+\frac{\left(\mathrm{i}\theta\right)^{\mathrm{2}} }{\mathrm{2}!}+\frac{\left(\mathrm{i}\theta\right)^{\mathrm{3}} }{\mathrm{3}!}+... \\ $$$$=\mathrm{1}+\mathrm{i}\theta−\frac{\theta^{\mathrm{2}} }{\mathrm{2}!}−\mathrm{i}\frac{\theta^{\mathrm{3}} }{\mathrm{3}!}+\frac{\theta^{\mathrm{4}} }{\mathrm{4}!}+\frac{\mathrm{i}\theta^{\mathrm{5}} }{\mathrm{5}!}−\frac{\theta^{\mathrm{6}} }{\mathrm{6}!}−\frac{\mathrm{i}\theta^{\mathrm{7}} }{\mathrm{7}!}+... \\ $$$$=\left(\mathrm{1}−\frac{\theta^{\mathrm{2}} }{\mathrm{2}!}+\frac{\theta^{\mathrm{4}} }{\mathrm{4}!}−\frac{\theta^{\mathrm{6}} }{\mathrm{6}!}+...\right)+\mathrm{i}\left(\theta−\frac{\theta^{\mathrm{3}} }{\mathrm{3}!}+\frac{\theta^{\mathrm{5}} }{\mathrm{5}!}−\frac{\theta^{\mathrm{7}} }{\mathrm{7}!}+...\right) \\ $$$$=\mathrm{cos}\theta+\mathrm{isin}\theta \\ $$$$ \\ $$

Commented by peter frank last updated on 16/May/22

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Commented by mathlove last updated on 16/May/22

thanks

$${thanks} \\ $$

Answered by MJS_new last updated on 18/May/22

cos θ =((e^(iθ) +e^(−iθ) )/2)  sin θ =((e^(iθ) −e^(−iθ) )/(2i))  cos θ +i sin θ =((e^(iθ) +e^(−iθ) )/2)+i((e^(iθ) −e^(−iθ) )/(2i))=e^(iθ)

$$\mathrm{cos}\:\theta\:=\frac{\mathrm{e}^{\mathrm{i}\theta} +\mathrm{e}^{−\mathrm{i}\theta} }{\mathrm{2}} \\ $$$$\mathrm{sin}\:\theta\:=\frac{\mathrm{e}^{\mathrm{i}\theta} −\mathrm{e}^{−\mathrm{i}\theta} }{\mathrm{2i}} \\ $$$$\mathrm{cos}\:\theta\:+\mathrm{i}\:\mathrm{sin}\:\theta\:=\frac{\mathrm{e}^{\mathrm{i}\theta} +\mathrm{e}^{−\mathrm{i}\theta} }{\mathrm{2}}+\mathrm{i}\frac{\mathrm{e}^{\mathrm{i}\theta} −\mathrm{e}^{−\mathrm{i}\theta} }{\mathrm{2i}}=\mathrm{e}^{\mathrm{i}\theta} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com