Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 17018 by tawa tawa last updated on 29/Jun/17

Find the cube root of:   55 + 63 (√2)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{root}\:\mathrm{of}:\:\:\:\mathrm{55}\:+\:\mathrm{63}\:\sqrt{\mathrm{2}} \\ $$

Commented by prakash jain last updated on 29/Jun/17

(a+b(√2))^3 =55+63(√2)  a^3 +3(√2)a^2 b+6b^2 a+2(√2)b^3 =55+63(√2)  a^3 +6b^2 a=55  (i)  3a^2 b+2b^3 =63  (ii)  2b^3 =3(21−a^2 b)  b integer implies b=3   9a^2 +54=63  a=1  check in (i)  1+54=55   ...(correct)  ((55+63(√2)))^(1/3) =1+3(√2)

$$\left({a}+{b}\sqrt{\mathrm{2}}\right)^{\mathrm{3}} =\mathrm{55}+\mathrm{63}\sqrt{\mathrm{2}} \\ $$$${a}^{\mathrm{3}} +\mathrm{3}\sqrt{\mathrm{2}}{a}^{\mathrm{2}} {b}+\mathrm{6}{b}^{\mathrm{2}} {a}+\mathrm{2}\sqrt{\mathrm{2}}{b}^{\mathrm{3}} =\mathrm{55}+\mathrm{63}\sqrt{\mathrm{2}} \\ $$$${a}^{\mathrm{3}} +\mathrm{6}{b}^{\mathrm{2}} {a}=\mathrm{55}\:\:\left({i}\right) \\ $$$$\mathrm{3}{a}^{\mathrm{2}} {b}+\mathrm{2}{b}^{\mathrm{3}} =\mathrm{63}\:\:\left({ii}\right) \\ $$$$\mathrm{2}{b}^{\mathrm{3}} =\mathrm{3}\left(\mathrm{21}−{a}^{\mathrm{2}} {b}\right) \\ $$$${b}\:{integer}\:{implies}\:{b}=\mathrm{3}\: \\ $$$$\mathrm{9}{a}^{\mathrm{2}} +\mathrm{54}=\mathrm{63} \\ $$$${a}=\mathrm{1} \\ $$$${check}\:{in}\:\left({i}\right) \\ $$$$\mathrm{1}+\mathrm{54}=\mathrm{55}\:\:\:...\left({correct}\right) \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{55}+\mathrm{63}\sqrt{\mathrm{2}}}=\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}} \\ $$

Commented by tawa tawa last updated on 29/Jun/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by mrW1 last updated on 30/Jun/17

can generally be said?  (a+b(√2))^n =c+d(√2)  (a+b(√3))^n =c+d(√3)  ......

$$\mathrm{can}\:\mathrm{generally}\:\mathrm{be}\:\mathrm{said}? \\ $$$$\left(\mathrm{a}+\mathrm{b}\sqrt{\mathrm{2}}\right)^{\mathrm{n}} =\mathrm{c}+\mathrm{d}\sqrt{\mathrm{2}} \\ $$$$\left(\mathrm{a}+\mathrm{b}\sqrt{\mathrm{3}}\right)^{\mathrm{n}} =\mathrm{c}+\mathrm{d}\sqrt{\mathrm{3}} \\ $$$$...... \\ $$

Commented by prakash jain last updated on 30/Jun/17

Not always.

$$\mathrm{Not}\:\mathrm{always}. \\ $$

Commented by prakash jain last updated on 30/Jun/17

if we change the question to  55+62(√2) the answer wont be  of the form a+b(√2).  i just tried this approach just  to see if a simple answer is possible.

$$\mathrm{if}\:\mathrm{we}\:\mathrm{change}\:\mathrm{the}\:\mathrm{question}\:\mathrm{to} \\ $$$$\mathrm{55}+\mathrm{62}\sqrt{\mathrm{2}}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{wont}\:\mathrm{be} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{form}\:{a}+{b}\sqrt{\mathrm{2}}. \\ $$$$\mathrm{i}\:\mathrm{just}\:\mathrm{tried}\:\mathrm{this}\:\mathrm{approach}\:\mathrm{just} \\ $$$$\mathrm{to}\:\mathrm{see}\:\mathrm{if}\:\mathrm{a}\:\mathrm{simple}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{possible}. \\ $$

Commented by mrW1 last updated on 30/Jun/17

is (a+b(√2))^n  not always of the form  c+d(√2) ?  (a+b(√2))^n =Σ_(k=0) ^n C_n ^k a^(n−k) (b(√2))^k   =C_n ^0 a^n +C_n ^2 a^(n−2) b^2 ((√2))^2 +C_n ^4 a^(n−4) b^4 ((√2))^4 +...  +C_n ^1 a^(n−1) b((√2))+C_n ^3 a^(n−3) b^3 ((√2))^3 +C_n ^5 a^(n−5) b^5 ((√2))^5 +...  =C_n ^0 a^n +2C_n ^2 a^(n−2) b^2 +2^2 C_n ^4 a^(n−4) b^4 +...  +C_n ^1 a^(n−1) b(√2)+2C_n ^3 a^(n−3) b^3 (√2)+2^2 C_n ^5 a^(n−5) b^5 (√2)+...  =[C_n ^0 a^n +2C_n ^2 a^(n−2) b^2 +2^2 C_n ^4 a^(n−4) b^4 +...]  +[C_n ^1 a^(n−1) b+2C_n ^3 a^(n−3) b^3 +2^2 C_n ^5 a^(n−5) b^5 +...](√2)  =c+d(√2)    a,b,c,d=integer

$$\mathrm{is}\:\left(\mathrm{a}+\mathrm{b}\sqrt{\mathrm{2}}\right)^{\mathrm{n}} \:\mathrm{not}\:\mathrm{always}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form} \\ $$$$\mathrm{c}+\mathrm{d}\sqrt{\mathrm{2}}\:? \\ $$$$\left(\mathrm{a}+\mathrm{b}\sqrt{\mathrm{2}}\right)^{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \mathrm{a}^{\mathrm{n}−\mathrm{k}} \left(\mathrm{b}\sqrt{\mathrm{2}}\right)^{\mathrm{k}} \\ $$$$=\mathrm{C}_{\mathrm{n}} ^{\mathrm{0}} \mathrm{a}^{\mathrm{n}} +\mathrm{C}_{\mathrm{n}} ^{\mathrm{2}} \mathrm{a}^{\mathrm{n}−\mathrm{2}} \mathrm{b}^{\mathrm{2}} \left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{C}_{\mathrm{n}} ^{\mathrm{4}} \mathrm{a}^{\mathrm{n}−\mathrm{4}} \mathrm{b}^{\mathrm{4}} \left(\sqrt{\mathrm{2}}\right)^{\mathrm{4}} +... \\ $$$$+\mathrm{C}_{\mathrm{n}} ^{\mathrm{1}} \mathrm{a}^{\mathrm{n}−\mathrm{1}} \mathrm{b}\left(\sqrt{\mathrm{2}}\right)+\mathrm{C}_{\mathrm{n}} ^{\mathrm{3}} \mathrm{a}^{\mathrm{n}−\mathrm{3}} \mathrm{b}^{\mathrm{3}} \left(\sqrt{\mathrm{2}}\right)^{\mathrm{3}} +\mathrm{C}_{\mathrm{n}} ^{\mathrm{5}} \mathrm{a}^{\mathrm{n}−\mathrm{5}} \mathrm{b}^{\mathrm{5}} \left(\sqrt{\mathrm{2}}\right)^{\mathrm{5}} +... \\ $$$$=\mathrm{C}_{\mathrm{n}} ^{\mathrm{0}} \mathrm{a}^{\mathrm{n}} +\mathrm{2C}_{\mathrm{n}} ^{\mathrm{2}} \mathrm{a}^{\mathrm{n}−\mathrm{2}} \mathrm{b}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \mathrm{C}_{\mathrm{n}} ^{\mathrm{4}} \mathrm{a}^{\mathrm{n}−\mathrm{4}} \mathrm{b}^{\mathrm{4}} +... \\ $$$$+\mathrm{C}_{\mathrm{n}} ^{\mathrm{1}} \mathrm{a}^{\mathrm{n}−\mathrm{1}} \mathrm{b}\sqrt{\mathrm{2}}+\mathrm{2C}_{\mathrm{n}} ^{\mathrm{3}} \mathrm{a}^{\mathrm{n}−\mathrm{3}} \mathrm{b}^{\mathrm{3}} \sqrt{\mathrm{2}}+\mathrm{2}^{\mathrm{2}} \mathrm{C}_{\mathrm{n}} ^{\mathrm{5}} \mathrm{a}^{\mathrm{n}−\mathrm{5}} \mathrm{b}^{\mathrm{5}} \sqrt{\mathrm{2}}+... \\ $$$$=\left[\mathrm{C}_{\mathrm{n}} ^{\mathrm{0}} \mathrm{a}^{\mathrm{n}} +\mathrm{2C}_{\mathrm{n}} ^{\mathrm{2}} \mathrm{a}^{\mathrm{n}−\mathrm{2}} \mathrm{b}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \mathrm{C}_{\mathrm{n}} ^{\mathrm{4}} \mathrm{a}^{\mathrm{n}−\mathrm{4}} \mathrm{b}^{\mathrm{4}} +...\right] \\ $$$$+\left[\mathrm{C}_{\mathrm{n}} ^{\mathrm{1}} \mathrm{a}^{\mathrm{n}−\mathrm{1}} \mathrm{b}+\mathrm{2C}_{\mathrm{n}} ^{\mathrm{3}} \mathrm{a}^{\mathrm{n}−\mathrm{3}} \mathrm{b}^{\mathrm{3}} +\mathrm{2}^{\mathrm{2}} \mathrm{C}_{\mathrm{n}} ^{\mathrm{5}} \mathrm{a}^{\mathrm{n}−\mathrm{5}} \mathrm{b}^{\mathrm{5}} +...\right]\sqrt{\mathrm{2}} \\ $$$$=\mathrm{c}+\mathrm{d}\sqrt{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}=\mathrm{integer} \\ $$

Commented by mrW1 last updated on 30/Jun/17

but (c+d(√2))^(1/n) ≠a+b(√2)    ???

$$\mathrm{but}\:\left(\mathrm{c}+\mathrm{d}\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} \neq\mathrm{a}+\mathrm{b}\sqrt{\mathrm{2}}\:\:\:\:??? \\ $$

Commented by tawa tawa last updated on 30/Jun/17

Thanks sirs. God bless you.

$$\mathrm{Thanks}\:\mathrm{sirs}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com