All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 170211 by mathlove last updated on 18/May/22
limx→0(tan−1(x−x1−x21−x2+x2)x3)=?pleassolvethis
Answered by aleks041103 last updated on 18/May/22
1)limx→0arctanxx=L′Hlimx→011+x2=12)limx→0x−x1−x21−x2+x2=03)⇒limx→0(tan−1(x−x1−x21−x2+x2)x3)==[limx→0x−x1−x21−x2+x2x3][limy→0arctan(y)y]==limx→0x−x1−x21−x2+x2x3wherey=x−x1−x21−x2+x24)⇒L=limx→0x(1−1−x2)x3(x2+1−x2)==(limx→01x2+1−x2)(limx→01−1−x2x2)=limx→01−1−x2x2=limx→0(1−1−x2)(1+1−x2)x2(1+1−x2)==limx→01−(1−x2)x2(1+1−x2)=limx→011+1−x2=12⇒Ans.12
Commented by mathlove last updated on 18/May/22
thanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com