Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 170221 by mathlove last updated on 18/May/22

lim_(x→0^+ )  (((((√x))^(√x) −x^x )/(((√x))^x −x^(√x) )))=?  help me

limx0+((x)xxx(x)xxx)=?helpme

Commented by mathlove last updated on 19/May/22

any one is answer

anyoneisanswer

Answered by qaz last updated on 19/May/22

lim_(x→0^+ ) ((((√x))^(√x) −x^x )/(((√x))^x −x^(√x) ))=lim_(x→0^+ ) ((e^((√x)ln(√x)) −e^(xlnx) )/(e^(xln(√x)) −e^((√x)lnx) ))=lim_(x→0^+ ) ((e^(xlnx) (e^((√x)ln(√x)−xlnx) −1))/(e^((√x)lnx) (e^(xln(√x)−(√x)lnx) −1)))  =lim_(x→0^+ ) ((e^((x−(√x))lnx) ((√x)ln(√x)−xlnx))/(xln(√x)−(√x)lnx))=lim_(x→0^+ ) ((ln(√x)−(√x)lnx)/( (√x)ln(√x)−lnx))  =lim_(x→0^+ ) (((1/2)lnx−(√x)lnx)/((1/2)(√x)lnx−lnx))=lim_(x→0^+ ) (((1/2)−(√x))/((1/2)(√x)−1))=−(1/2)

limx0+(x)xxx(x)xxx=limx0+exlnxexlnxexlnxexlnx=limx0+exlnx(exlnxxlnx1)exlnx(exlnxxlnx1)=limx0+e(xx)lnx(xlnxxlnx)xlnxxlnx=limx0+lnxxlnxxlnxlnx=limx0+12lnxxlnx12xlnxlnx=limx0+12x12x1=12

Commented by mathlove last updated on 19/May/22

NICE

NICE

Terms of Service

Privacy Policy

Contact: info@tinkutara.com