Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 170290 by muneer0o0 last updated on 19/May/22

Commented by Engr_Jidda last updated on 19/May/22

the question is not clear

thequestionisnotclear

Answered by Mathspace last updated on 21/May/22

i f the Q is ∫_0 ^2 ∫_x ^(√(4−x^2 )) ((x/y))^2 dy dx  ⇒I=∫_0 ^2 (∫_x ^(√(4−x^2 )) (1/y^2 )dy)x^2 dx  =∫_0 ^2 ([−(1/y)]_x ^(√(4−x^2 )) )x^2 dx  =∫_0 ^2 x^2 ((1/x)−(1/( (√(4−x^2 )))))dx  =∫_0 ^2 xdx−∫_0 ^2 (x^2 /( (√(4−x^2 ))))dx  =[(x^2 /2)]_0 ^2 −∫_0 ^2 (x^2 /( (√(4−x^2 ))))dx  =2+∫_0 ^2 ((4−x^2 −4)/( (√(4−x^2 ))))dx  =2+∫_0 ^2 (√(4−x^2 ))dx+4∫_0 ^2 (dx/( (√(4−x^2 ))))  we have  ∫_0 ^2 (√(4−x^2 ))dx=_(x=2sinθ)   ∫_0 ^(π/2) 2cosθ(2cosθ)dθ  =4∫_0 ^(π/2) cos^2 (θ)dθ=2∫_0 ^(π/2) (1+cos(2θ))dθ  =π +[sin(2θ)]_0 ^(π/2) =π  ∫_0 ^2 (dx/( (√(4−x^2 ))))=_(x=2t)   ∫_0 ^1 ((2dt)/(2(√(1−t^2 ))))  =[arcsint]_0 ^1 =(π/2) ⇒  I=2+π+2π =2+3π

iftheQis02x4x2(xy)2dydxI=02(x4x21y2dy)x2dx=02([1y]x4x2)x2dx=02x2(1x14x2)dx=02xdx02x24x2dx=[x22]0202x24x2dx=2+024x244x2dx=2+024x2dx+402dx4x2wehave024x2dx=x=2sinθ0π22cosθ(2cosθ)dθ=40π2cos2(θ)dθ=20π2(1+cos(2θ))dθ=π+[sin(2θ)]0π2=π02dx4x2=x=2t012dt21t2=[arcsint]01=π2I=2+π+2π=2+3π

Commented by Tawa11 last updated on 08/Oct/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com