Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 170336 by Mastermind last updated on 21/May/22

if cos^2 ∝ + 3cosec^2 θ = 7, find the   expression of tan^2 θ, Hence show that  tanθ=1.    Mastermind

ifcos2+3cosec2θ=7,findtheexpressionoftan2θ,Henceshowthattanθ=1.Mastermind

Commented by MATHSLORD22 last updated on 21/May/22

cos^2 θ or cos^2 α ??

cos2θorcos2α??

Answered by thfchristopher last updated on 21/May/22

cos^2 θ+3csc^2 θ=7  ⇒sin^2 θcos^2 θ+3=7sin^2 θ  ⇒sin^2 θ(1−sin^2 θ)+3=7sin^2 θ  ⇒sin^2 θ−sin^4 θ+3=7sin^2 θ  ⇒sin^4 θ+6sin^2 θ−3=0  sin^2 θ=((−6±(√(36+12)))/2)=((−6±4(√3))/2)  ∴ sin^2 θ=2(√3)−3  ⇒cos^2 θ=4−2(√3)  ⇒tan^2 θ=((2(√3)−3)/(4−2(√3)))  =((√3)/2)

cos2θ+3csc2θ=7sin2θcos2θ+3=7sin2θsin2θ(1sin2θ)+3=7sin2θsin2θsin4θ+3=7sin2θsin4θ+6sin2θ3=0sin2θ=6±36+122=6±432sin2θ=233cos2θ=423tan2θ=233423=32

Commented by MATHSLORD22 last updated on 21/May/22

He wrote α not θ

Hewroteαnotθ

Commented by mr W last updated on 21/May/22

He wrote ∝ not α :)

Hewrotenotα:)

Commented by Mastermind last updated on 21/May/22

Thank you man

Thankyouman

Answered by 2kdw last updated on 28/Apr/23

i) cos^2 α +(3/(sin^2 α))=7    if cos^2 x=1−sin^2 x  ...(1)  and sin^2 x=t ... (2)    ∴ t(1−t)+3=7t  −t^2 +t+3=7t  −t^2 −6t+3=0  ∴ (t+3)^2 =12  ⇒t=2(√3)−3 or t=−3−2(√3)    but   (1)   1−t≥0    then  t≤1  ∴  determinant (((t=2(√3)−3)))    ii) If (2)  t=sin^2 α  [sin^2 α=2(√3)−3]    ...(1)  cos^2 α=1−2(√3)+3      ∴  tan^2 α=((2(√3)−3)/(1−2(√3)+3))     determinant (((tan^2 α=((2(√3)−3)/(4−2(√3))))))

i)cos2α+3sin2α=7ifcos2x=1sin2x...(1)andsin2x=t...(2)t(1t)+3=7tt2+t+3=7tt26t+3=0(t+3)2=12t=233ort=323but(1)1t0thent1t=233ii)If(2)t=sin2α[sin2α=233]...(1)cos2α=123+3tan2α=233123+3tan2α=233423

Commented by Mastermind last updated on 21/May/22

Thanks man

Thanksman

Terms of Service

Privacy Policy

Contact: info@tinkutara.com