Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 170349 by antoineop last updated on 21/May/22

  help please    ∫_1 ^∞ ((1/t)−sin^(−1) ((1/t))) dt  I can show that it is equal to  −Σ_(n≥0) (−1)^n (((2n−1)!)/(4^n (n!)^2 (2n+1)))  but I cant calculate it...

$$ \\ $$$${help}\:{please}\:\: \\ $$$$\overset{\infty} {\int}_{\mathrm{1}} \left(\frac{\mathrm{1}}{{t}}−\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{t}}\right)\right)\:{dt} \\ $$$${I}\:{can}\:{show}\:{that}\:{it}\:{is}\:{equal}\:{to} \\ $$$$−\underset{{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{n}} \frac{\left(\mathrm{2}{n}−\mathrm{1}\right)!}{\mathrm{4}^{{n}} \left({n}!\right)^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$${but}\:{I}\:{cant}\:{calculate}\:{it}... \\ $$

Answered by aleks041103 last updated on 21/May/22

(1/( (√(1−x^2 ))))=(1+(−x^2 ))^(−1/2)   (1+z)^a =1+az+((a(a−1))/2)z^2 +((a(a−1)(a−2))/(3!))z^3 +...=  =1+Σ_(i=1) ^∞ (z^i /(i!))Π_(j=0) ^(i−1) (a−j)  (1/( (√(1−x^2 ))))=1+Σ_(i=1) ^∞ (((−x^2 )^i )/(i!))Π_(j=0) ^(i−1) (−(1/2)−j)=  =1+Σ_(i=1) ^∞ (((−1)^i x^(2i) )/(i!)) Π_(j=0) ^(i−1) (−(1/2))(2j+1)=   Π_(j=0) ^(i−1) (−(1/2))(2j+1)=(−(1/2))^i  (1.3. ... .(2i−1))  1.3. ... .(2i−1)=(((2i)!)/(2^i i!))  (1/( (√(1−x^2 ))))=1+Σ_(i=1) ^∞ (((2i)!)/(4^i (i!)^2 ))x^(2i) =Σ_(i=0) ^∞ (((2i)!)/(4^i (i!)^2 ))x^(2i)   sin^(−1) (x)=∫_0 ^( x) (dx/( (√(1−x^2 ))))=  =Σ_(i=0) ^∞ (((2i)!)/(4^i (i!)^2 ))∫_0 ^( x) x^(2i) dx=Σ_(i=0) ^∞ (((2i)!)/(4^i (2i+1)(i!)^2 ))x^(2i+1)   (1/t)−sin^(−1) (t)=  =(1/t)−Σ_(i=0) ^∞ (((2i)!)/(4^i (2i+1)(i!)^2 )) (1/t^(2i+1) )=  =−Σ_(i=1) ^∞ (((2i)!)/(4^i (2i+1)(i!)^2 )) (1/t^(2i+1) )  ⇒∫_1 ^∞ ((1/t)−asin((1/t)))dt=  =−Σ_(i=1) ^∞ (((2i)!)/(4^i (2i+1)(i!)^2 )) ∫_1 ^∞ t^(−2i−1) dt=  =−Σ_(i=1) ^∞ (((2i)!)/(4^i (2i+1)(i!)^2 )) ((t^(−2i) /(−2i))]_1 ^∞ =  =−Σ_(i=1) ^∞ (((2i−1)!)/(4^i (2i+1)(i!)^2 ))

$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}=\left(\mathrm{1}+\left(−{x}^{\mathrm{2}} \right)\right)^{−\mathrm{1}/\mathrm{2}} \\ $$$$\left(\mathrm{1}+{z}\right)^{{a}} =\mathrm{1}+{az}+\frac{{a}\left({a}−\mathrm{1}\right)}{\mathrm{2}}{z}^{\mathrm{2}} +\frac{{a}\left({a}−\mathrm{1}\right)\left({a}−\mathrm{2}\right)}{\mathrm{3}!}{z}^{\mathrm{3}} +...= \\ $$$$=\mathrm{1}+\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{z}^{{i}} }{{i}!}\underset{{j}=\mathrm{0}} {\overset{{i}−\mathrm{1}} {\prod}}\left({a}−{j}\right) \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}=\mathrm{1}+\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−{x}^{\mathrm{2}} \right)^{{i}} }{{i}!}\underset{{j}=\mathrm{0}} {\overset{{i}−\mathrm{1}} {\prod}}\left(−\frac{\mathrm{1}}{\mathrm{2}}−{j}\right)= \\ $$$$=\mathrm{1}+\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{i}} {x}^{\mathrm{2}{i}} }{{i}!}\:\underset{{j}=\mathrm{0}} {\overset{{i}−\mathrm{1}} {\prod}}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{2}{j}+\mathrm{1}\right)= \\ $$$$\:\underset{{j}=\mathrm{0}} {\overset{{i}−\mathrm{1}} {\prod}}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{2}{j}+\mathrm{1}\right)=\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{i}} \:\left(\mathrm{1}.\mathrm{3}.\:...\:.\left(\mathrm{2}{i}−\mathrm{1}\right)\right) \\ $$$$\mathrm{1}.\mathrm{3}.\:...\:.\left(\mathrm{2}{i}−\mathrm{1}\right)=\frac{\left(\mathrm{2}{i}\right)!}{\mathrm{2}^{{i}} {i}!} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}=\mathrm{1}+\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}{i}\right)!}{\mathrm{4}^{{i}} \left({i}!\right)^{\mathrm{2}} }{x}^{\mathrm{2}{i}} =\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}{i}\right)!}{\mathrm{4}^{{i}} \left({i}!\right)^{\mathrm{2}} }{x}^{\mathrm{2}{i}} \\ $$$${sin}^{−\mathrm{1}} \left({x}\right)=\int_{\mathrm{0}} ^{\:{x}} \frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}= \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}{i}\right)!}{\mathrm{4}^{{i}} \left({i}!\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\:{x}} {x}^{\mathrm{2}{i}} {dx}=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}{i}\right)!}{\mathrm{4}^{{i}} \left(\mathrm{2}{i}+\mathrm{1}\right)\left({i}!\right)^{\mathrm{2}} }{x}^{\mathrm{2}{i}+\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{{t}}−{sin}^{−\mathrm{1}} \left({t}\right)= \\ $$$$=\frac{\mathrm{1}}{{t}}−\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}{i}\right)!}{\mathrm{4}^{{i}} \left(\mathrm{2}{i}+\mathrm{1}\right)\left({i}!\right)^{\mathrm{2}} }\:\frac{\mathrm{1}}{{t}^{\mathrm{2}{i}+\mathrm{1}} }= \\ $$$$=−\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}{i}\right)!}{\mathrm{4}^{{i}} \left(\mathrm{2}{i}+\mathrm{1}\right)\left({i}!\right)^{\mathrm{2}} }\:\frac{\mathrm{1}}{{t}^{\mathrm{2}{i}+\mathrm{1}} } \\ $$$$\Rightarrow\int_{\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{{t}}−{asin}\left(\frac{\mathrm{1}}{{t}}\right)\right){dt}= \\ $$$$=−\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}{i}\right)!}{\mathrm{4}^{{i}} \left(\mathrm{2}{i}+\mathrm{1}\right)\left({i}!\right)^{\mathrm{2}} }\:\int_{\mathrm{1}} ^{\infty} {t}^{−\mathrm{2}{i}−\mathrm{1}} {dt}= \\ $$$$=−\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}{i}\right)!}{\mathrm{4}^{{i}} \left(\mathrm{2}{i}+\mathrm{1}\right)\left({i}!\right)^{\mathrm{2}} }\:\left(\frac{{t}^{−\mathrm{2}{i}} }{−\mathrm{2}{i}}\right]_{\mathrm{1}} ^{\infty} = \\ $$$$=−\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}{i}−\mathrm{1}\right)!}{\mathrm{4}^{{i}} \left(\mathrm{2}{i}+\mathrm{1}\right)\left({i}!\right)^{\mathrm{2}} } \\ $$

Commented by aleks041103 last updated on 21/May/22

Commented by antoineop last updated on 21/May/22

Yep thats what I did, thanks ! (I'm sorry my English is really bad) but I'm supposed to calculate this integral, so, I'm supposed to calculate this sum and I don't know how..

Commented by aleks041103 last updated on 21/May/22

The main part of the solution is  finding a series representation for   the inverse sine function.  After that it′s easy.

$${The}\:{main}\:{part}\:{of}\:{the}\:{solution}\:{is} \\ $$$${finding}\:{a}\:{series}\:{representation}\:{for} \\ $$$$\:{the}\:{inverse}\:{sine}\:{function}. \\ $$$${After}\:{that}\:{it}'{s}\:{easy}. \\ $$

Commented by antoineop last updated on 21/May/22

My exercise just tell me "Justify the existence of this integral and then, calculate it" I dont know how to calculate this sum, I've also tried IBP but .. still impossible

Commented by aleks041103 last updated on 21/May/22

I dont think that there is a closed form.

$${I}\:{dont}\:{think}\:{that}\:{there}\:{is}\:{a}\:{closed}\:{form}. \\ $$

Commented by antoineop last updated on 21/May/22

That's what I think too, I'll ask my teacher next week and share it if he has a way (of not) to calculate that ! thanks :)

Commented by aleks041103 last updated on 21/May/22

Your task was to prove that the imtegral  converges and then calculate it, which  you′ve already done by finding this sum

$${Your}\:{task}\:{was}\:{to}\:{prove}\:{that}\:{the}\:{imtegral} \\ $$$${converges}\:{and}\:{then}\:{calculate}\:{it},\:{which} \\ $$$${you}'{ve}\:{already}\:{done}\:{by}\:{finding}\:{this}\:{sum} \\ $$

Commented by aleks041103 last updated on 21/May/22

f(x)=sin^(−1) (x)−x  we analyze x∈[0,1]  we know that  x≥sin(x), x≥0  ⇒sin^(−1) x≥x≥0  ⇒sin^(−1) x−x≥0  ⇒∫_1 ^∞ −f((1/t))dt≤0

$${f}\left({x}\right)={sin}^{−\mathrm{1}} \left({x}\right)−{x} \\ $$$${we}\:{analyze}\:{x}\in\left[\mathrm{0},\mathrm{1}\right] \\ $$$${we}\:{know}\:{that} \\ $$$${x}\geqslant{sin}\left({x}\right),\:{x}\geqslant\mathrm{0} \\ $$$$\Rightarrow{sin}^{−\mathrm{1}} {x}\geqslant{x}\geqslant\mathrm{0} \\ $$$$\Rightarrow{sin}^{−\mathrm{1}} {x}−{x}\geqslant\mathrm{0} \\ $$$$\Rightarrow\int_{\mathrm{1}} ^{\infty} −{f}\left(\frac{\mathrm{1}}{{t}}\right){dt}\leqslant\mathrm{0} \\ $$

Commented by antoineop last updated on 22/May/22

yeah but in France in 99% of analysis exercises we are able to calculate directly the sum

Commented by Tawa11 last updated on 08/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com