All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 170369 by cortano1 last updated on 22/May/22
Answered by som(math1967) last updated on 22/May/22
sin10=b2a3sin10−4sin310=sin30⇒3b2a−4b38a3=12⇒3a2b−b32a3=12⇒3a2b−b3=a3∴a3+b3=3a2bar.△ABC=12×b×a2−b24=12×b×4a2−b22=14×4a2b2−b4=14×b(4a2b−b3)=14×b(4a2b−3a2b+a3)[∵a3+b3=3a2b]=14×ba2(a+b)=14×a×b(a+b)ADsin80=BCsin60AD=b3×2×sin80=b3×2×4a2−b22a=4a2b2−b43a=b(4a2b−b3)3×1a=b(a3+a2b)3=a×1ab(a+b)3=b(a+b)3cos80=b2atan40=1−cos801+cos80=2a−b2a+b=4a2−b2(2a+b)2=4a2−b22a+b2rb=tan40r=12×b4a2−b22a+b=4a2b2−b42(2a+b)=b(4a2b−b3)2(2a+b)=ba2(a+b)2(2a+b)=ab(a+b)2(2a+b)asin80=2RR=a2sin80=a2×4a2−b22a=a24a2−b2=a×a2b4a2b−b3=aa2ba2b+a3=a×b(a+b)
Commented by Tawa11 last updated on 08/Oct/22
Greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com