All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 170488 by leicianocosta last updated on 25/May/22
Answered by FelipeLz last updated on 25/May/22
1)a(t)=ddt[v(t)]=ddt[2+3t+5t2]=3+10ta(5)=53m⋅s−22)y=f′(x0)(x−x0)+y0y0=f(x0)→y0=f(π)=[3sin(π)+4cos(π)]5=[−4]5=−1024u=3sin(x)+4cos(x)→f′(x)=ddu[u5]ddx[3sin(x)+4cos(x)]=5[3sin(x)+4cos(x)]4[3cos(x)−4sin(x)]f′(π)=5[3sin(π)+4cos(π)]4[3cos(π)−4sin(π)]=5[−4]4[−3]=−3840y=−3840x+3840π−10243)a)dfdx=ddx[x2+1]⋅tan(x)+(x2+1)ddx[tan(x)]=2xtan(x)+(x2+1)sec2(x)b)dfdx=ddx[x2+3x+1]⋅(x−2)−(x2+3x+1)ddx[x−2](x−2)2=(2x+3)(x−2)−(x2+3x+1)x2−4x+4=x2−4x−7x2−4x+44)u=x2+5xf′(x)=ddu[eu]ddx[x2+5x]=(2x+5)ex2+5xf′(−1)=3e−45)(x0,y0)∣f′(x0)=0f′(x)=x−1−(x+1)⋅12x−1x−1=2(x−1)−(x+1)2x−1x−1=x−32(x−1)23x0−32(x0−1)23=0⇒x0=3y0=f(3)=3+13−1=42=22(3,22)6)F(x)=∫xag(t)dt=G(x)−G(a)∴dFdx=dGdx=g(x)a)dFdx=5x+2b)dFdx=x
Terms of Service
Privacy Policy
Contact: info@tinkutara.com