Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 170501 by kndramaths last updated on 25/May/22

          solve this:                ∫∫_D x^2 e^(xy) dxdy  D:{(x.y)∈R^2  /0≤x≤1.  0≤y≤2}        ∫∫_D ((ydxdy)/((1+x^2 +y^2 )^(3/2) )).  0≤x≤1.0≤y≤1.

solvethis:Dx2exydxdyD:{(x.y)R2/0x1.0y2}Dydxdy(1+x2+y2)32.0x1.0y1.

Answered by FelipeLz last updated on 26/May/22

A = ∫∫_D x^2 e^(xy) dxdy = ∫_0 ^2 ∫_0 ^1 x^2 e^(xy) dxdy = ∫_0 ^1 [∫_0 ^2 x^2 e^(xy) dy]dx           ∫_0 ^2 x^2 e^(xy) dy = x^2 ∫_0 ^2 e^(xy) dy = [x^2 (e^(xy) /x)]_(y=0) ^(y=2)  = [xe^(xy) ]_(y=0) ^(y=2)  = xe^(2x) −x  A = ∫_0 ^1 (xe^(2x) −x)dx = ∫_0 ^1 xe^(2x) dx−∫_0 ^1 xdx = [(1/2)xe^(2x) −(1/4)e^(2x) −(x^2 /2)]_0 ^1  = (1/2)e^2 −(1/4)e^2 −(1/2)−(0−(1/4)−0) = (1/4)(e^2 −1)  •  B = ∫∫_D (y/((1+x^2 +y^2 )^(3/2) ))dxdy = ∫_0 ^1 [∫(y/( (√((1+x^2 +y^2 )^3 ))))dy]_(y=0) ^(y=1) dx            u = 1+x^2 +y^2  ⇒ du = 2ydy                      ∫(y/( (√((1+x^2 +y^2 )^3 ))))dy = (1/2)∫(1/( (√u^3 )))du = −(1/( (√u))) = −(1/( (√(1+x^2 +y^2 ))))  B = ∫_0 ^1 [−(1/( (√(2+x^2 ))))+(1/( (√(1+x^2 ))))]dx = ∫_0 ^1 (1/( (√(1+x^2 ))))dx−∫_0 ^1 (1/( (√(2+x^2 ))))dx = ∫_0 ^1 (1/( (√(1+x^2 ))))dx−(1/( (√2)))∫_0 ^1 (1/( (√(1+(x^2 /2)))))dx           x = tan(v) ⇒ dx = sec^2 (v)dv                   ∫(1/( (√(1+x^2 ))))dx = ∫((sec^2 (v))/( (√(1+tan^2 (v)))))dv = ∫sec(v)dv = ln∣sec(v)+tan(v)∣ = ln∣(√(1+x^2 ))+x∣ = sinh^(−1) (x)          (x/( (√2))) = tan(t) ⇒ dx = (√2)sec^2 (t)dt                    (1/( (√2)))∫(1/( (√(1+(x^2 /2)))))dx = ∫((sec^2 (t))/( (√(1+tan^2 (t)))))dt = ln∣sec(t)+tan(t)∣ = ln∣(√(1+(x^2 /2)))+(x/( (√2)))∣ = sinh^(−1) ((x/( (√2))))  B = [sinh^(−1) (x)]_0 ^1 −[sinh^(−1) ((x/( (√2))))]_0 ^1  = sinh^(−1) (1)−sinh^(−1) ((1/( (√2)))) = ln((√2)+1)−ln(((1+(√3))/( (√2)))) = ln(((2+(√2))/(1+(√3))))

A=Dx2exydxdy=2010x2exydxdy=10[20x2exydy]dx20x2exydy=x220exydy=[x2exyx]y=0y=2=[xexy]y=0y=2=xe2xxA=10(xe2xx)dx=10xe2xdx10xdx=[12xe2x14e2xx22]01=12e214e212(0140)=14(e21)B=Dy(1+x2+y2)3/2dxdy=10[y(1+x2+y2)3dy]y=0y=1dxu=1+x2+y2du=2ydyy(1+x2+y2)3dy=121u3du=1u=11+x2+y2B=10[12+x2+11+x2]dx=1011+x2dx1012+x2dx=1011+x2dx121011+x22dxx=tan(v)dx=sec2(v)dv11+x2dx=sec2(v)1+tan2(v)dv=sec(v)dv=lnsec(v)+tan(v)=ln1+x2+x=sinh1(x)x2=tan(t)dx=2sec2(t)dt1211+x22dx=sec2(t)1+tan2(t)dt=lnsec(t)+tan(t)=ln1+x22+x2=sinh1(x2)B=[sinh1(x)]01[sinh1(x2)]01=sinh1(1)sinh1(12)=ln(2+1)ln(1+32)=ln(2+21+3)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com