All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 170501 by kndramaths last updated on 25/May/22
solvethis:∫∫Dx2exydxdyD:{(x.y)∈R2/0⩽x⩽1.0⩽y⩽2}∫∫Dydxdy(1+x2+y2)32.0⩽x⩽1.0⩽y⩽1.
Answered by FelipeLz last updated on 26/May/22
A=∫∫Dx2exydxdy=∫20∫10x2exydxdy=∫10[∫20x2exydy]dx∫20x2exydy=x2∫20exydy=[x2exyx]y=0y=2=[xexy]y=0y=2=xe2x−xA=∫10(xe2x−x)dx=∫10xe2xdx−∫10xdx=[12xe2x−14e2x−x22]01=12e2−14e2−12−(0−14−0)=14(e2−1)∙B=∫∫Dy(1+x2+y2)3/2dxdy=∫10[∫y(1+x2+y2)3dy]y=0y=1dxu=1+x2+y2⇒du=2ydy∫y(1+x2+y2)3dy=12∫1u3du=−1u=−11+x2+y2B=∫10[−12+x2+11+x2]dx=∫1011+x2dx−∫1012+x2dx=∫1011+x2dx−12∫1011+x22dxx=tan(v)⇒dx=sec2(v)dv∫11+x2dx=∫sec2(v)1+tan2(v)dv=∫sec(v)dv=ln∣sec(v)+tan(v)∣=ln∣1+x2+x∣=sinh−1(x)x2=tan(t)⇒dx=2sec2(t)dt12∫11+x22dx=∫sec2(t)1+tan2(t)dt=ln∣sec(t)+tan(t)∣=ln∣1+x22+x2∣=sinh−1(x2)B=[sinh−1(x)]01−[sinh−1(x2)]01=sinh−1(1)−sinh−1(12)=ln(2+1)−ln(1+32)=ln(2+21+3)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com