Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 170578 by mnjuly1970 last updated on 27/May/22

      ∫_0 ^( 1) (√x) sin^( −1) ( x )dx = ?

$$ \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \sqrt{{x}}\:{sin}^{\:−\mathrm{1}} \left(\:{x}\:\right){dx}\:=\:? \\ $$$$ \\ $$

Answered by Mathspace last updated on 27/May/22

I=∫_0 ^1 (√x)arcsin(x)dx  x=sint ⇒I=∫_0 ^(π/2) (√(sint))t  cost dt  =∫_0 ^(π/2) t(cost(√(sint)))dt  let=u=t and v^′ =cost (√(sint))  ⇒v=(2/3)(sint)^(3/2)  ⇒  I=[(2/3)t(sint)^(3/2) ]_0 ^(π/2) −(2/3)∫_0 ^(π/2) (sint)^(3/2) dt  =(π/3)−(2/3)∫_0 ^(π/2) (sint)^(3/2) dt  but we know 2∫_0 ^(π/2) cos^(2p−1) t sin^(2q−1) tdt  =B(p,q)=((Γ(p).Γ(q))/(Γ(p+q))) ⇒  ∫_0 ^(π/2) (sint)^(3/2) dt=∫_0 ^(π/2) (sint)^(2.(5/4)−1)  cos^(2((1/2))−1) dt  =(1/2)B((5/4),(1/2))=(1/2)((Γ((5/4))Γ((1/2)))/(Γ((5/4)+(1/2))))  =((√π)/2)×((Γ((5/4)))/(Γ((7/4)))) ⇒  I=(π/3)−((√π)/3)×((Γ((5/4)))/(Γ((7/4))))

$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}}{arcsin}\left({x}\right){dx} \\ $$$${x}={sint}\:\Rightarrow{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{{sint}}{t}\:\:{cost}\:{dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {t}\left({cost}\sqrt{{sint}}\right){dt} \\ $$$${let}={u}={t}\:{and}\:{v}^{'} ={cost}\:\sqrt{{sint}} \\ $$$$\Rightarrow{v}=\frac{\mathrm{2}}{\mathrm{3}}\left({sint}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \:\Rightarrow \\ $$$${I}=\left[\frac{\mathrm{2}}{\mathrm{3}}{t}\left({sint}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sint}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {dt} \\ $$$$=\frac{\pi}{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sint}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {dt} \\ $$$${but}\:{we}\:{know}\:\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}{p}−\mathrm{1}} {t}\:{sin}^{\mathrm{2}{q}−\mathrm{1}} {tdt} \\ $$$$={B}\left({p},{q}\right)=\frac{\Gamma\left({p}\right).\Gamma\left({q}\right)}{\Gamma\left({p}+{q}\right)}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sint}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {dt}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sint}\right)^{\mathrm{2}.\frac{\mathrm{5}}{\mathrm{4}}−\mathrm{1}} \:{cos}^{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{B}\left(\frac{\mathrm{5}}{\mathrm{4}},\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\frac{\Gamma\left(\frac{\mathrm{5}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{5}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{2}}×\frac{\Gamma\left(\frac{\mathrm{5}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{7}}{\mathrm{4}}\right)}\:\Rightarrow \\ $$$${I}=\frac{\pi}{\mathrm{3}}−\frac{\sqrt{\pi}}{\mathrm{3}}×\frac{\Gamma\left(\frac{\mathrm{5}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{7}}{\mathrm{4}}\right)} \\ $$

Commented by mnjuly1970 last updated on 28/May/22

verynice  solution  thank you..

$${verynice}\:\:{solution}\:\:{thank}\:{you}.. \\ $$

Commented by Tawa11 last updated on 08/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com