Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 170580 by mnjuly1970 last updated on 27/May/22

     calculate        Σ_(n=1) ^∞  (( F_n )/(n.3^( n) )) = ?

$$ \\ $$$$\:\:\:{calculate} \\ $$$$\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\mathrm{F}_{{n}} }{{n}.\mathrm{3}^{\:{n}} }\:=\:?\:\:\: \\ $$$$ \\ $$

Answered by Mathspace last updated on 27/May/22

f_n is fefimed by f_0 =0 and?f_1 =1  and  f_(n+2) =f_n +f_(n+1)   ce→r^2 −r−1=0  Δ=1+4=5 ⇒r_1 =((1+(√5))/2)  r_2 =((1−(√5))/2)  ⇒f_n =ar_1 ^n +br_2 ^n   f_0 =0=a+b  f_1 =1=r_1 a+r_2 b=(r_1 −r_2 )a  =(√5)a ⇒a=(1/( (√5))) and b=−(1/( (√5)))  ⇒f_n  =(1/( (√5)))r_1 ^n −(1/( (√5)))r_2 ^n  ⇒  Σ_(n=1) ^∞  (f_n /(n3^n ))=(1/( (√5)))Σ_(n=1) ^∞  (1/n)((r_1 /3))^n   −(1/( (√5)))Σ_(n=1) ^∞ (1/n)((r_2 /3))^n   let s(x)=Σ_(n=1) ^∞ (x^n /n) ⇒  s(x)=−ln(1−x) ⇒  Σ_(n=1) ^∞  (f_n /(n3^n ))=−(1/( (√5)))ln(1−(r_1 /3))  +(1/( (√5)))ln(1−(r_2 /3))  =(1/( (√5)))ln(((3−r_2 )/(3−r_1 )))  =(1/( (√5)))ln(((3−((1−(√5))/2))/(3−((1+(√5))/2))))  =(1/( (√5)))ln(((5+(√5))/(5−(√5))))=(1/( (√5)))ln((((√5)+1)/( (√5)−1)))        0

$${f}_{{n}} {is}\:{fefimed}\:{by}\:{f}_{\mathrm{0}} =\mathrm{0}\:{and}?{f}_{\mathrm{1}} =\mathrm{1} \\ $$$${and}\:\:{f}_{{n}+\mathrm{2}} ={f}_{{n}} +{f}_{{n}+\mathrm{1}} \\ $$$${ce}\rightarrow{r}^{\mathrm{2}} −{r}−\mathrm{1}=\mathrm{0} \\ $$$$\Delta=\mathrm{1}+\mathrm{4}=\mathrm{5}\:\Rightarrow{r}_{\mathrm{1}} =\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${r}_{\mathrm{2}} =\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\Rightarrow{f}_{{n}} ={ar}_{\mathrm{1}} ^{{n}} +{br}_{\mathrm{2}} ^{{n}} \\ $$$${f}_{\mathrm{0}} =\mathrm{0}={a}+{b} \\ $$$${f}_{\mathrm{1}} =\mathrm{1}={r}_{\mathrm{1}} {a}+{r}_{\mathrm{2}} {b}=\left({r}_{\mathrm{1}} −{r}_{\mathrm{2}} \right){a} \\ $$$$=\sqrt{\mathrm{5}}{a}\:\Rightarrow{a}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\:{and}\:{b}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$$\Rightarrow{f}_{{n}} \:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}{r}_{\mathrm{1}} ^{{n}} −\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}{r}_{\mathrm{2}} ^{{n}} \:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{f}_{{n}} }{{n}\mathrm{3}^{{n}} }=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\left(\frac{{r}_{\mathrm{1}} }{\mathrm{3}}\right)^{{n}} \\ $$$$−\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}}\left(\frac{{r}_{\mathrm{2}} }{\mathrm{3}}\right)^{{n}} \\ $$$${let}\:{s}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \frac{{x}^{{n}} }{{n}}\:\Rightarrow \\ $$$${s}\left({x}\right)=−{ln}\left(\mathrm{1}−{x}\right)\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{f}_{{n}} }{{n}\mathrm{3}^{{n}} }=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}{ln}\left(\mathrm{1}−\frac{{r}_{\mathrm{1}} }{\mathrm{3}}\right) \\ $$$$+\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}{ln}\left(\mathrm{1}−\frac{{r}_{\mathrm{2}} }{\mathrm{3}}\right) \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}{ln}\left(\frac{\mathrm{3}−{r}_{\mathrm{2}} }{\mathrm{3}−{r}_{\mathrm{1}} }\right) \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}{ln}\left(\frac{\mathrm{3}−\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}}{\mathrm{3}−\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}}\right) \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}{ln}\left(\frac{\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{5}−\sqrt{\mathrm{5}}}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}{ln}\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\:\sqrt{\mathrm{5}}−\mathrm{1}}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\mathrm{0} \\ $$

Commented by mnjuly1970 last updated on 28/May/22

thanks alot...

$${thanks}\:{alot}... \\ $$

Commented by Tawa11 last updated on 08/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com