Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 17068 by chux last updated on 30/Jun/17

prove that     4tan^(−1) ((1/5))−tan^(−1) ((1/(239))) =π/4

$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$ \\ $$$$\mathrm{4tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{5}}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{239}}\right)\:=\pi/\mathrm{4} \\ $$

Answered by ajfour last updated on 30/Jun/17

z_1 =5+i  ;  z_2 =239+i  Arg(z_1 )=tan^(−1) (1/5)=α  Arg(z_2 )=tan^(−1) (1/239)=β  let z=(z_1 ^4 /z_2 ), then Arg(z)=4α−β  z=(z_1 ^4 /z_2 )=(((5+i)^4 )/(239+i))=(((24+10i)^2 (239−i))/(239^2 +1))    =(((476+480i)(239−i))/(239^2 +1))    =(((476×239+480)+i(480×239−476))/(239^2 +1))  z=((114244)/(239^2 +1)) (1+i)   z has argument θ=π/4   ⇒ 4α−β=(π/4)+kπ  or  4tan^(−1) ((1/5))−tan^(−1) ((1/(239)))=(π/4)+kπ.

$$\mathrm{z}_{\mathrm{1}} =\mathrm{5}+\mathrm{i}\:\:;\:\:\mathrm{z}_{\mathrm{2}} =\mathrm{239}+\mathrm{i} \\ $$$$\mathrm{Arg}\left(\mathrm{z}_{\mathrm{1}} \right)=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}/\mathrm{5}\right)=\alpha \\ $$$$\mathrm{Arg}\left(\mathrm{z}_{\mathrm{2}} \right)=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}/\mathrm{239}\right)=\beta \\ $$$$\mathrm{let}\:\mathrm{z}=\frac{\mathrm{z}_{\mathrm{1}} ^{\mathrm{4}} }{\mathrm{z}_{\mathrm{2}} },\:\mathrm{then}\:\mathrm{Arg}\left(\mathrm{z}\right)=\mathrm{4}\alpha−\beta \\ $$$$\mathrm{z}=\frac{\mathrm{z}_{\mathrm{1}} ^{\mathrm{4}} }{\mathrm{z}_{\mathrm{2}} }=\frac{\left(\mathrm{5}+\mathrm{i}\right)^{\mathrm{4}} }{\mathrm{239}+\mathrm{i}}=\frac{\left(\mathrm{24}+\mathrm{10i}\right)^{\mathrm{2}} \left(\mathrm{239}−\mathrm{i}\right)}{\mathrm{239}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\:\:=\frac{\left(\mathrm{476}+\mathrm{480i}\right)\left(\mathrm{239}−\mathrm{i}\right)}{\mathrm{239}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\:\:=\frac{\left(\mathrm{476}×\mathrm{239}+\mathrm{480}\right)+\mathrm{i}\left(\mathrm{480}×\mathrm{239}−\mathrm{476}\right)}{\mathrm{239}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\mathrm{z}=\frac{\mathrm{114244}}{\mathrm{239}^{\mathrm{2}} +\mathrm{1}}\:\left(\mathrm{1}+\mathrm{i}\right)\: \\ $$$$\mathrm{z}\:\mathrm{has}\:\mathrm{argument}\:\theta=\pi/\mathrm{4}\: \\ $$$$\Rightarrow\:\mathrm{4}\alpha−\beta=\frac{\pi}{\mathrm{4}}+\mathrm{k}\pi \\ $$$$\mathrm{or}\:\:\mathrm{4tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{5}}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{239}}\right)=\frac{\pi}{\mathrm{4}}+\mathrm{k}\pi. \\ $$

Commented by chux last updated on 01/Jul/17

mr Ajfour I really enjoy this   approach

$$\mathrm{mr}\:\mathrm{Ajfour}\:\mathrm{I}\:\mathrm{really}\:\mathrm{enjoy}\:\mathrm{this}\: \\ $$$$\mathrm{approach} \\ $$

Answered by mrW1 last updated on 30/Jun/17

α=tan^(−1) (1/5)  β=tan^(−1) (1/(239))  tan 2α=((2tan α)/(1−tan^2  α))=((2×(1/5))/(1−((1/5))^2 ))=(5/(12))  tan 4α=((2tan 2α)/(1−tan^2  2α))=((2×(5/(12)))/(1−((5/(12)))^2 ))=((120)/(119))  tan (4α−β)=((tan 4α−tan β)/(1+tan 4α tan β))  =((((120)/(119))−(1/(239)))/(1+((120)/(119)) ×(1/(239))))  =((120×239−119)/(119×239+120))  =((28561)/(28561))  =1  ⇒4α−β=tan^(−1) 1=(π/4)+kπ with k∈Z  ⇒ 4 tan^(−1) ((1/5))−tan^(−1) ((1/(239))) =(π/4)+kπ

$$\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\beta=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{239}} \\ $$$$\mathrm{tan}\:\mathrm{2}\alpha=\frac{\mathrm{2tan}\:\alpha}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\alpha}=\frac{\mathrm{2}×\frac{\mathrm{1}}{\mathrm{5}}}{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{5}}\right)^{\mathrm{2}} }=\frac{\mathrm{5}}{\mathrm{12}} \\ $$$$\mathrm{tan}\:\mathrm{4}\alpha=\frac{\mathrm{2tan}\:\mathrm{2}\alpha}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\mathrm{2}\alpha}=\frac{\mathrm{2}×\frac{\mathrm{5}}{\mathrm{12}}}{\mathrm{1}−\left(\frac{\mathrm{5}}{\mathrm{12}}\right)^{\mathrm{2}} }=\frac{\mathrm{120}}{\mathrm{119}} \\ $$$$\mathrm{tan}\:\left(\mathrm{4}\alpha−\beta\right)=\frac{\mathrm{tan}\:\mathrm{4}\alpha−\mathrm{tan}\:\beta}{\mathrm{1}+\mathrm{tan}\:\mathrm{4}\alpha\:\mathrm{tan}\:\beta} \\ $$$$=\frac{\frac{\mathrm{120}}{\mathrm{119}}−\frac{\mathrm{1}}{\mathrm{239}}}{\mathrm{1}+\frac{\mathrm{120}}{\mathrm{119}}\:×\frac{\mathrm{1}}{\mathrm{239}}} \\ $$$$=\frac{\mathrm{120}×\mathrm{239}−\mathrm{119}}{\mathrm{119}×\mathrm{239}+\mathrm{120}} \\ $$$$=\frac{\mathrm{28561}}{\mathrm{28561}} \\ $$$$=\mathrm{1} \\ $$$$\Rightarrow\mathrm{4}\alpha−\beta=\mathrm{tan}^{−\mathrm{1}} \mathrm{1}=\frac{\pi}{\mathrm{4}}+\mathrm{k}\pi\:\mathrm{with}\:\mathrm{k}\in\mathbb{Z} \\ $$$$\Rightarrow\:\mathrm{4}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{5}}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{239}}\right)\:=\frac{\pi}{\mathrm{4}}+\mathrm{k}\pi \\ $$

Commented by chux last updated on 30/Jun/17

wow..... i really appreciate.

$$\mathrm{wow}.....\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$$$ \\ $$

Commented by Abbas-Nahi last updated on 01/Jul/17

very very Good.....with my best wishes

$${very}\:{very}\:\mathrm{Good}.....\mathrm{with}\:\mathrm{my}\:\mathrm{best}\:\mathrm{wishes} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com