Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 170729 by solomonwells last updated on 30/May/22

Commented by phamkhanhhuong last updated on 30/May/22

⇔(√(x−1+2(√(x−1))+1))+(√(x−1−2(√(x−1))+1))=x−1  ⇔(√(((√(x−1))+1)^2 ))+(√(((√(x−1))−1)^2 ))=x−1  ⇔∣(√(x−1))+1∣+∣(√(x−1))−1∣=x−1(∗)  (√(x−1))+1>0 ∀x∈[1;+∞).  •(√(x−1))≥1⇔x≥2  (∗)⇔2(√(x−1))=x−1⇔(√(x−1))=0 or 2=(√(x−1))  ⇔x=5.  •(√(x−1))<1⇔x<2  (∗)⇔2=x−1⇔x=3(...)  KL: x=5

x1+2x1+1+x12x1+1=x1(x1+1)2+(x11)2=x1⇔∣x1+1+x11∣=x1()x1+1>0x[1;+).x11x2()2x1=x1x1=0or2=x1x=5.x1<1x<2()2=x1x=3(...)KL:x=5

Commented by Rasheed.Sindhi last updated on 30/May/22

⋒∥^(•) ⋐∈^  !

!

Answered by MJS_new last updated on 30/May/22

(√((x−1)+1+2(√(x−1))))+(√((x−1)+1−2(√(x−1))))=x−1  (√(x−1))=t∧t≥0  (√(t^2 +2t+1))+(√(t^2 −2t+1))=t^2   ∣t+1∣+∣t−1∣=t^2   (1) 0≤t≤1 ⇒ ∣t−1∣=1−t  2=t^2  ⇒ t=(√2)>1 no solution  (2) t>1 ⇒ ∣t−1∣=t−1  2t=t^2  ⇒ (t=0<1 no solution)∨t=2  ⇒  t=(√2) ⇒ x−1=4 ⇒ x=5

(x1)+1+2x1+(x1)+12x1=x1x1=tt0t2+2t+1+t22t+1=t2t+1+t1∣=t2(1)0t1t1∣=1t2=t2t=2>1nosolution(2)t>1t1∣=t12t=t2(t=0<1nosolution)t=2t=2x1=4x=5

Answered by som(math1967) last updated on 30/May/22

{(√(x+2(√(x−1))))+(√(x−2(√(x−1))))}^2 =(x−1)^2   ⇒x+2(√(x−1))+x−2(√(x−1))+2(√(x^2 −4x+4))=(x−1)^2   ⇒2x+2(x−2)=x^2 −2x+1  ⇒x^2 −6x+5=0  ⇒(x−5)(x−1)=0    x=5

{x+2x1+x2x1}2=(x1)2x+2x1+x2x1+2x24x+4=(x1)22x+2(x2)=x22x+1x26x+5=0(x5)(x1)=0x=5

Commented by Tawa11 last updated on 30/May/22

Great sir

Greatsir

Answered by Rasheed.Sindhi last updated on 30/May/22

(√(x+2(√(x−1)))) +(√(x−2(√(x−1)))) =x−1  Multiplying by  (√(x−2(√(x−1)))) :  (√(x^2 −4(x−1))) +x−2(√(x−1)) =(x−1)(√(x−2(√(x−1))))   2x−2−2(√(x−1)) =(x−1)(√(x−2(√(x−1))))   2(x−1−(√(x−1)) )=(x−1)(√(x−2(√(x−1))))   (√(x−1)) =y⇒x−1=y^2 ⇒x=y^2 +1  2(y^2 −y)=y^2 (√(y^2 +1−2y))  2(y^2 −y)=y^2 (y−1)  2y(y−1)−y^2 (y−1)=0  y(y−1)(2−y)=0  y=0 ∣ y−1=0 ∣ y−2=0  •(√(x−1))=0⇒x=0  (Not valid)  •(√(x−1)) −1=0⇒x−1=1⇒x=2 (Not valid)  •(√(x−1)) −2=0⇒x−1=4⇒x=5✓

x+2x1+x2x1=x1Multiplyingbyx2x1:x24(x1)+x2x1=(x1)x2x12x22x1=(x1)x2x12(x1x1)=(x1)x2x1x1=yx1=y2x=y2+12(y2y)=y2y2+12y2(y2y)=y2(y1)2y(y1)y2(y1)=0y(y1)(2y)=0y=0y1=0y2=0x1=0x=0(Notvalid)x11=0x1=1x=2(Notvalid)x12=0x1=4x=5

Commented by Tawa11 last updated on 30/May/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com