Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 170738 by Tawa11 last updated on 30/May/22

Commented by Tawa11 last updated on 30/May/22

How to get the second step please????  S   =   (1/8)Σ_(n = 0) ^∞ (3/((3n + 1)(3n + 2)))  −  (5/((3n + 2)(3n + 3)))  +  (2/((3n + 3)(3n + 1)))  From the question ...

$$\mathrm{How}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{second}\:\mathrm{step}\:\mathrm{please}???? \\ $$$$\mathrm{S}\:\:\:=\:\:\:\frac{\mathrm{1}}{\mathrm{8}}\underset{\mathrm{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{3}}{\left(\mathrm{3n}\:+\:\mathrm{1}\right)\left(\mathrm{3n}\:+\:\mathrm{2}\right)}\:\:−\:\:\frac{\mathrm{5}}{\left(\mathrm{3n}\:+\:\mathrm{2}\right)\left(\mathrm{3n}\:+\:\mathrm{3}\right)}\:\:+\:\:\frac{\mathrm{2}}{\left(\mathrm{3n}\:+\:\mathrm{3}\right)\left(\mathrm{3n}\:+\:\mathrm{1}\right)} \\ $$$$\mathrm{From}\:\mathrm{the}\:\mathrm{question}\:... \\ $$

Commented by mr W last updated on 30/May/22

(1/((3n+1)(3n+2)(3n+3)))=(A/(3n+1))+(B/(3n+2))+(C/(3n+3))  1=(3n+2)(3n+3)A+(3n+1)(3n+3)B+(3n+1)(3n+2)C  with 3n+1=0:  1=1×2×A ⇒A=(1/2)  with 3n+2=0:  1=(−1)(1)B ⇒B=−1  with 3n+3=0:  1=(−2)(−1)C ⇒C=(1/2)  ⇒(1/((3n+1)(3n+2)(3n+3)))=(1/2)((1/(3n+1))−(2/(3n+2))+(1/(3n+3)))

$$\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{3}\right)}=\frac{{A}}{\mathrm{3}{n}+\mathrm{1}}+\frac{{B}}{\mathrm{3}{n}+\mathrm{2}}+\frac{{C}}{\mathrm{3}{n}+\mathrm{3}} \\ $$$$\mathrm{1}=\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{3}\right){A}+\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{3}\right){B}+\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right){C} \\ $$$${with}\:\mathrm{3}{n}+\mathrm{1}=\mathrm{0}: \\ $$$$\mathrm{1}=\mathrm{1}×\mathrm{2}×{A}\:\Rightarrow{A}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${with}\:\mathrm{3}{n}+\mathrm{2}=\mathrm{0}: \\ $$$$\mathrm{1}=\left(−\mathrm{1}\right)\left(\mathrm{1}\right){B}\:\Rightarrow{B}=−\mathrm{1} \\ $$$${with}\:\mathrm{3}{n}+\mathrm{3}=\mathrm{0}: \\ $$$$\mathrm{1}=\left(−\mathrm{2}\right)\left(−\mathrm{1}\right){C}\:\Rightarrow{C}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{3}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{3}{n}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{3}}\right) \\ $$

Commented by Tawa11 last updated on 30/May/22

Thanks for your time sir.

$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$

Commented by Tawa11 last updated on 30/May/22

I understand this sir

$$\mathrm{I}\:\mathrm{understand}\:\mathrm{this}\:\mathrm{sir} \\ $$

Commented by Tawa11 last updated on 30/May/22

Commented by Tawa11 last updated on 30/May/22

Is that particular expression I want.

$$\mathrm{Is}\:\mathrm{that}\:\mathrm{particular}\:\mathrm{expression}\:\mathrm{I}\:\mathrm{want}. \\ $$

Commented by Tawa11 last updated on 30/May/22

The second step ...

$$\mathrm{The}\:\mathrm{second}\:\mathrm{step}\:... \\ $$

Commented by mr W last updated on 30/May/22

(1/((3n+1)(3n+2)(3n+3)))=(A/((3n+1)(3n+2)))+(B/((3n+2)(3n+3)))+(C/((3n+3)(3n+1)))  (1/((3n+1)(3n+2)(3n+3)))=((3n(A+B+C)+(3A+B+2C))/((3n+1)(3n+2)(3n+1)))  ⇒A+B+C=0  ⇒3A+B+2C=1   ⇒2A+2B+2C+A−B=1  ⇒A−B=1  you may find infinite possibilities  for A,B,C. for example as the step 2  in the solution did:  A=(3/8), B=−(5/8), C=(2/8)  A+B+C=((3−5+2)/8)=0 ✓  3A+B+2C=((3×3−5+2×2)/8)=1 ✓  but this was arbitrarily done. so you  don′t need to request yourself to get  the same.  certainly you can also take other  values for A,B,C, because as i said   there are infinite solutions.  but you don′t need to take any special  values for A,B,C in order to solve the  problem.  Σ_(n=0) ^∞ (1/((3n+1)(3n+2)(3n+3)))  =Σ_(n=0) ^∞ [(A/((3n+1)(3n+2)))+(B/((3n+2)(3n+3)))+(C/((3n+3)(3n+1)))]  =(1/9)Σ_(n=0) ^∞ [(A/((n+(1/3))(n+(2/3))))+(B/((n+(2/3))(n+1)))+(C/((n+1)(n+(1/3))))]  =(1/9){((A[ψ((2/3))−ψ((1/3))])/((2/3)−(1/3)))+((B[ψ(1)−ψ((2/3))])/(1−(2/3)))+((C[ψ(1)−ψ((1/3))])/(1−(1/3)))}  =(1/3){((A[ψ((2/3))−ψ((1/3))])/1)+((B[ψ(1)−ψ((2/3))])/1)+((C[ψ(1)−ψ((1/3))])/2)}  =(1/6){2A[ψ((2/3))−ψ((1/3))]+2B[ψ(1)−ψ((2/3))]+C[ψ(1)−ψ((1/3))]}  =(1/6){2Aψ((2/3))−2Aψ((1/3))+2Bψ(1)−2Bψ((2/3))+Cψ(1)−Cψ((1/3))}  =(2/3){(2A−2B)ψ((2/3))−(2A+C)ψ((1/3))+(2B+C)ψ(1)}  =(1/6){(2A−2B)(ψ((1/3))+(π/( (√3))))−(2A+C)ψ((1/3))+(2B+C)ψ(1)}  =(1/6){2(A−B)(π/( (√3)))+(2B+C)(ψ(1)−ψ((1/3)))}  =(1/6){2(A−B)(π/( (√3)))+(2B+C)((π/(2(√3)))+(3/2)ln 3)}  =(((A−B))/4)((π/( (√3)))−ln 3)  =(1/4)((π/( (√3)))−ln 3) ✓

$$\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{3}\right)}=\frac{{A}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)}+\frac{{B}}{\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{3}\right)}+\frac{{C}}{\left(\mathrm{3}{n}+\mathrm{3}\right)\left(\mathrm{3}{n}+\mathrm{1}\right)} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{3}\right)}=\frac{\mathrm{3}{n}\left({A}+{B}+{C}\right)+\left(\mathrm{3}{A}+{B}+\mathrm{2}{C}\right)}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{1}\right)} \\ $$$$\Rightarrow{A}+{B}+{C}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{3}{A}+{B}+\mathrm{2}{C}=\mathrm{1}\: \\ $$$$\Rightarrow\mathrm{2}{A}+\mathrm{2}{B}+\mathrm{2}{C}+{A}−{B}=\mathrm{1} \\ $$$$\Rightarrow{A}−{B}=\mathrm{1} \\ $$$${you}\:{may}\:{find}\:{infinite}\:{possibilities} \\ $$$${for}\:{A},{B},{C}.\:{for}\:{example}\:{as}\:{the}\:{step}\:\mathrm{2} \\ $$$${in}\:{the}\:{solution}\:{did}: \\ $$$${A}=\frac{\mathrm{3}}{\mathrm{8}},\:{B}=−\frac{\mathrm{5}}{\mathrm{8}},\:{C}=\frac{\mathrm{2}}{\mathrm{8}} \\ $$$${A}+{B}+{C}=\frac{\mathrm{3}−\mathrm{5}+\mathrm{2}}{\mathrm{8}}=\mathrm{0}\:\checkmark \\ $$$$\mathrm{3}{A}+{B}+\mathrm{2}{C}=\frac{\mathrm{3}×\mathrm{3}−\mathrm{5}+\mathrm{2}×\mathrm{2}}{\mathrm{8}}=\mathrm{1}\:\checkmark \\ $$$${but}\:{this}\:{was}\:{arbitrarily}\:{done}.\:{so}\:{you} \\ $$$${don}'{t}\:{need}\:{to}\:{request}\:{yourself}\:{to}\:{get} \\ $$$${the}\:{same}. \\ $$$${certainly}\:{you}\:{can}\:{also}\:{take}\:{other} \\ $$$${values}\:{for}\:{A},{B},{C},\:{because}\:{as}\:{i}\:{said}\: \\ $$$${there}\:{are}\:{infinite}\:{solutions}. \\ $$$${but}\:{you}\:{don}'{t}\:{need}\:{to}\:{take}\:{any}\:{special} \\ $$$${values}\:{for}\:{A},{B},{C}\:{in}\:{order}\:{to}\:{solve}\:{the} \\ $$$${problem}. \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{3}\right)} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{{A}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)}+\frac{{B}}{\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{3}\right)}+\frac{{C}}{\left(\mathrm{3}{n}+\mathrm{3}\right)\left(\mathrm{3}{n}+\mathrm{1}\right)}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{{A}}{\left({n}+\frac{\mathrm{1}}{\mathrm{3}}\right)\left({n}+\frac{\mathrm{2}}{\mathrm{3}}\right)}+\frac{{B}}{\left({n}+\frac{\mathrm{2}}{\mathrm{3}}\right)\left({n}+\mathrm{1}\right)}+\frac{{C}}{\left({n}+\mathrm{1}\right)\left({n}+\frac{\mathrm{1}}{\mathrm{3}}\right)}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\left\{\frac{{A}\left[\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right]}{\frac{\mathrm{2}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}}+\frac{{B}\left[\psi\left(\mathrm{1}\right)−\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right]}{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}}+\frac{{C}\left[\psi\left(\mathrm{1}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right]}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left\{\frac{{A}\left[\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right]}{\mathrm{1}}+\frac{{B}\left[\psi\left(\mathrm{1}\right)−\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right]}{\mathrm{1}}+\frac{{C}\left[\psi\left(\mathrm{1}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right]}{\mathrm{2}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\left\{\mathrm{2}{A}\left[\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right]+\mathrm{2}{B}\left[\psi\left(\mathrm{1}\right)−\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right]+{C}\left[\psi\left(\mathrm{1}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right]\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\left\{\mathrm{2}{A}\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)−\mathrm{2}{A}\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)+\mathrm{2}{B}\psi\left(\mathrm{1}\right)−\mathrm{2}{B}\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)+{C}\psi\left(\mathrm{1}\right)−{C}\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right\} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\left\{\left(\mathrm{2}{A}−\mathrm{2}{B}\right)\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)−\left(\mathrm{2}{A}+{C}\right)\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)+\left(\mathrm{2}{B}+{C}\right)\psi\left(\mathrm{1}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\left\{\left(\mathrm{2}{A}−\mathrm{2}{B}\right)\left(\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)+\frac{\pi}{\:\sqrt{\mathrm{3}}}\right)−\left(\mathrm{2}{A}+{C}\right)\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)+\left(\mathrm{2}{B}+{C}\right)\psi\left(\mathrm{1}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\left\{\mathrm{2}\left({A}−{B}\right)\frac{\pi}{\:\sqrt{\mathrm{3}}}+\left(\mathrm{2}{B}+{C}\right)\left(\psi\left(\mathrm{1}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\left\{\mathrm{2}\left({A}−{B}\right)\frac{\pi}{\:\sqrt{\mathrm{3}}}+\left(\mathrm{2}{B}+{C}\right)\left(\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}+\frac{\mathrm{3}}{\mathrm{2}}\mathrm{ln}\:\mathrm{3}\right)\right\} \\ $$$$=\frac{\left({A}−{B}\right)}{\mathrm{4}}\left(\frac{\pi}{\:\sqrt{\mathrm{3}}}−\mathrm{ln}\:\mathrm{3}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\pi}{\:\sqrt{\mathrm{3}}}−\mathrm{ln}\:\mathrm{3}\right)\:\checkmark \\ $$

Commented by Tawa11 last updated on 30/May/22

Wow, God bless you sir. I appreciate.

$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com