Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 170754 by Tawa11 last updated on 30/May/22

Solve:       x    +   (√y)    =    3        ......  (i)       (√x)    +    y    =    5        ......  (ii)

$$\mathrm{Solve}: \\ $$$$\:\:\:\:\:\mathrm{x}\:\:\:\:+\:\:\:\sqrt{\mathrm{y}}\:\:\:\:=\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:......\:\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\sqrt{\mathrm{x}}\:\:\:\:+\:\:\:\:\mathrm{y}\:\:\:\:=\:\:\:\:\mathrm{5}\:\:\:\:\:\:\:\:......\:\:\left(\mathrm{ii}\right) \\ $$

Commented by MJS_new last updated on 30/May/22

obviously x=1∧y=4

$$\mathrm{obviously}\:{x}=\mathrm{1}\wedge{y}=\mathrm{4} \\ $$

Commented by aleks041103 last updated on 30/May/22

And yet not obvious if it is the only solution

$${And}\:{yet}\:{not}\:{obvious}\:{if}\:{it}\:{is}\:{the}\:{only}\:{solution} \\ $$

Commented by MJS_new last updated on 30/May/22

x, y ∈R ⇒ x≥0∧y≥0  (i) ⇒  y=(x−3)^2 ∧x≤3  (ii) ⇒ y=−(√x)+5∧y≤5  ⇒  0≤x≤3∧0≤y≤5  within these borders both functions are  decreasing ⇒ only 1 solution

$${x},\:{y}\:\in\mathbb{R}\:\Rightarrow\:{x}\geqslant\mathrm{0}\wedge{y}\geqslant\mathrm{0} \\ $$$$\left(\mathrm{i}\right)\:\Rightarrow\:\:{y}=\left({x}−\mathrm{3}\right)^{\mathrm{2}} \wedge{x}\leqslant\mathrm{3} \\ $$$$\left(\mathrm{ii}\right)\:\Rightarrow\:{y}=−\sqrt{{x}}+\mathrm{5}\wedge{y}\leqslant\mathrm{5} \\ $$$$\Rightarrow \\ $$$$\mathrm{0}\leqslant{x}\leqslant\mathrm{3}\wedge\mathrm{0}\leqslant{y}\leqslant\mathrm{5} \\ $$$$\mathrm{within}\:\mathrm{these}\:\mathrm{borders}\:\mathrm{both}\:\mathrm{functions}\:\mathrm{are} \\ $$$$\mathrm{decreasing}\:\Rightarrow\:\mathrm{only}\:\mathrm{1}\:\mathrm{solution} \\ $$

Commented by aleks041103 last updated on 30/May/22

That is not necearily true.  The simplest contrapoint I can think of  is the case of the functions  y=(1/x) and y=(5/2)−x.  both are decreasing for x>0, but  but there are two solutions  x=(1/2) and x=2

$${That}\:{is}\:{not}\:{necearily}\:{true}. \\ $$$${The}\:{simplest}\:{contrapoint}\:{I}\:{can}\:{think}\:{of} \\ $$$${is}\:{the}\:{case}\:{of}\:{the}\:{functions} \\ $$$${y}=\frac{\mathrm{1}}{{x}}\:{and}\:{y}=\frac{\mathrm{5}}{\mathrm{2}}−{x}. \\ $$$${both}\:{are}\:{decreasing}\:{for}\:{x}>\mathrm{0},\:{but} \\ $$$${but}\:{there}\:{are}\:{two}\:{solutions} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{x}=\mathrm{2} \\ $$

Commented by Tawa11 last updated on 30/May/22

I appreciate sir

$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir} \\ $$

Answered by aleks041103 last updated on 30/May/22

(√x)=u,(√y)=v  u^2 +v=3⇒v=3−u^2   u+v^2 =5  u+(3−u^2 )^2 =5  u+9−6u^2 +u^4 =5  ⇒u^4 −6u^2 +u+4=0  f(1)=1^4 −6 1^4 +1+4=0  ⇒u−1∣u^4 −6u^2 +u+4  ⇒u^4 −6u^2 +u+4=(u−1)(u^3 +u^2 −5u−4)  ⇒u=(√x)=1⇒x=1⇒y=4  now  (√x),(√y)∈R⇒x,y≥0  ⇒(√x)<5⇒x<25 and y<5  (√y)<3⇒y<9 and x<3  ⇒x∈(0,3) and y∈(0,5)  ⇒u∈(0,(√3)) and v∈(0,(√5))  Let g(u)=u^3 +u^2 −5u−4  We find the max value for interval  (0,(√3)):  g(0)=−4  g((√3))=3(√3)+3−5(√3)−4=−2(√3)−1  g′(u)=3u^2 +2u−5=3(u−1)(u+(5/3))  ⇒g′(u)<0⇔u∈(((−5)/3),1)  g′(u)>0⇔u∈(−∞,((−5)/3))∪(1,∞)  ⇒g(u) is decreasing in (0,1) and   increasing in (1,(√3))  ⇒at u=1 we have a minimum  ⇒max_(u∈(0,(√3)))  g(u)=max(g(0),g((√3)))  but both g(0) and g((√3)) are less than 0  ⇒max_(u∈(0,(√3)))  g(u)<0⇒∄u∈(0,(√3)), s.t. g(u)=0  ⇒Only solution is  x=1,y=4

$$\sqrt{{x}}={u},\sqrt{{y}}={v} \\ $$$${u}^{\mathrm{2}} +{v}=\mathrm{3}\Rightarrow{v}=\mathrm{3}−{u}^{\mathrm{2}} \\ $$$${u}+{v}^{\mathrm{2}} =\mathrm{5} \\ $$$${u}+\left(\mathrm{3}−{u}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{5} \\ $$$${u}+\mathrm{9}−\mathrm{6}{u}^{\mathrm{2}} +{u}^{\mathrm{4}} =\mathrm{5} \\ $$$$\Rightarrow{u}^{\mathrm{4}} −\mathrm{6}{u}^{\mathrm{2}} +{u}+\mathrm{4}=\mathrm{0} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1}^{\mathrm{4}} −\mathrm{6}\:\mathrm{1}^{\mathrm{4}} +\mathrm{1}+\mathrm{4}=\mathrm{0} \\ $$$$\Rightarrow{u}−\mathrm{1}\mid{u}^{\mathrm{4}} −\mathrm{6}{u}^{\mathrm{2}} +{u}+\mathrm{4} \\ $$$$\Rightarrow{u}^{\mathrm{4}} −\mathrm{6}{u}^{\mathrm{2}} +{u}+\mathrm{4}=\left({u}−\mathrm{1}\right)\left({u}^{\mathrm{3}} +{u}^{\mathrm{2}} −\mathrm{5}{u}−\mathrm{4}\right) \\ $$$$\Rightarrow{u}=\sqrt{{x}}=\mathrm{1}\Rightarrow{x}=\mathrm{1}\Rightarrow{y}=\mathrm{4} \\ $$$${now} \\ $$$$\sqrt{{x}},\sqrt{{y}}\in\mathbb{R}\Rightarrow{x},{y}\geqslant\mathrm{0} \\ $$$$\Rightarrow\sqrt{{x}}<\mathrm{5}\Rightarrow{x}<\mathrm{25}\:{and}\:{y}<\mathrm{5} \\ $$$$\sqrt{{y}}<\mathrm{3}\Rightarrow{y}<\mathrm{9}\:{and}\:{x}<\mathrm{3} \\ $$$$\Rightarrow{x}\in\left(\mathrm{0},\mathrm{3}\right)\:{and}\:{y}\in\left(\mathrm{0},\mathrm{5}\right) \\ $$$$\Rightarrow{u}\in\left(\mathrm{0},\sqrt{\mathrm{3}}\right)\:{and}\:{v}\in\left(\mathrm{0},\sqrt{\mathrm{5}}\right) \\ $$$${Let}\:{g}\left({u}\right)={u}^{\mathrm{3}} +{u}^{\mathrm{2}} −\mathrm{5}{u}−\mathrm{4} \\ $$$${We}\:{find}\:{the}\:{max}\:{value}\:{for}\:{interval} \\ $$$$\left(\mathrm{0},\sqrt{\mathrm{3}}\right): \\ $$$${g}\left(\mathrm{0}\right)=−\mathrm{4} \\ $$$${g}\left(\sqrt{\mathrm{3}}\right)=\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{3}−\mathrm{5}\sqrt{\mathrm{3}}−\mathrm{4}=−\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1} \\ $$$${g}'\left({u}\right)=\mathrm{3}{u}^{\mathrm{2}} +\mathrm{2}{u}−\mathrm{5}=\mathrm{3}\left({u}−\mathrm{1}\right)\left({u}+\frac{\mathrm{5}}{\mathrm{3}}\right) \\ $$$$\Rightarrow{g}'\left({u}\right)<\mathrm{0}\Leftrightarrow{u}\in\left(\frac{−\mathrm{5}}{\mathrm{3}},\mathrm{1}\right) \\ $$$${g}'\left({u}\right)>\mathrm{0}\Leftrightarrow{u}\in\left(−\infty,\frac{−\mathrm{5}}{\mathrm{3}}\right)\cup\left(\mathrm{1},\infty\right) \\ $$$$\Rightarrow{g}\left({u}\right)\:{is}\:{decreasing}\:{in}\:\left(\mathrm{0},\mathrm{1}\right)\:{and} \\ $$$$\:{increasing}\:{in}\:\left(\mathrm{1},\sqrt{\mathrm{3}}\right) \\ $$$$\Rightarrow{at}\:{u}=\mathrm{1}\:{we}\:{have}\:{a}\:{minimum} \\ $$$$\Rightarrow\underset{{u}\in\left(\mathrm{0},\sqrt{\mathrm{3}}\right)} {{max}}\:{g}\left({u}\right)={max}\left({g}\left(\mathrm{0}\right),{g}\left(\sqrt{\mathrm{3}}\right)\right) \\ $$$${but}\:{both}\:{g}\left(\mathrm{0}\right)\:{and}\:{g}\left(\sqrt{\mathrm{3}}\right)\:{are}\:{less}\:{than}\:\mathrm{0} \\ $$$$\Rightarrow\underset{{u}\in\left(\mathrm{0},\sqrt{\mathrm{3}}\right)} {{max}}\:{g}\left({u}\right)<\mathrm{0}\Rightarrow\nexists{u}\in\left(\mathrm{0},\sqrt{\mathrm{3}}\right),\:{s}.{t}.\:{g}\left({u}\right)=\mathrm{0} \\ $$$$\Rightarrow{Only}\:{solution}\:{is} \\ $$$${x}=\mathrm{1},{y}=\mathrm{4} \\ $$$$ \\ $$

Commented by Tawa11 last updated on 30/May/22

I appreciate sir

$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com