Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 170795 by ali009 last updated on 31/May/22

solve  (x^2 +y^2 +1)dx+x(x−2y)dy=0

$${solve} \\ $$$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}\right){dx}+{x}\left({x}−\mathrm{2}{y}\right){dy}=\mathrm{0} \\ $$

Answered by LEKOUMA last updated on 31/May/22

x^2 +y^2 +1+x(x−2y)(dy/dx)=0  x^2 +y^2 +1+x(x−2y)y^′ =0  x^2 +y^2 +x^2 −2xyy^′ =0  Let y=xt  2x^2 +x^2 t^2 −2x^2 ty^′ =0  2+t^2 −2ty^′ =0  −2ty^′ =−t^2 −2  y^′ =((−t^2 −2)/(−2t))  (dy/dx)=(t/2)+(1/t)=((t^2 +2)/(2t))  (dx/dy)=((2t)/(t^2 +2))  dx=((2t)/(t^2 +2))dt  ∫dx=∫((2t)/(t^2 +2))dt  x=ln ∣t^2 +2∣+c

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}+{x}\left({x}−\mathrm{2}{y}\right)\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}+{x}\left({x}−\mathrm{2}{y}\right){y}^{'} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{2}{xyy}^{'} =\mathrm{0} \\ $$$${Let}\:{y}={xt} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +{x}^{\mathrm{2}} {t}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} {ty}^{'} =\mathrm{0} \\ $$$$\mathrm{2}+{t}^{\mathrm{2}} −\mathrm{2}{ty}^{'} =\mathrm{0} \\ $$$$−\mathrm{2}{ty}^{'} =−{t}^{\mathrm{2}} −\mathrm{2} \\ $$$${y}^{'} =\frac{−{t}^{\mathrm{2}} −\mathrm{2}}{−\mathrm{2}{t}} \\ $$$$\frac{{dy}}{{dx}}=\frac{{t}}{\mathrm{2}}+\frac{\mathrm{1}}{{t}}=\frac{{t}^{\mathrm{2}} +\mathrm{2}}{\mathrm{2}{t}} \\ $$$$\frac{{dx}}{{dy}}=\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{2}} \\ $$$${dx}=\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{2}}{dt} \\ $$$$\int{dx}=\int\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{2}}{dt} \\ $$$${x}=\mathrm{ln}\:\mid{t}^{\mathrm{2}} +\mathrm{2}\mid+{c} \\ $$

Commented by mr W last updated on 31/May/22

where is the 1 gone?  x^2 +y^2 +1+x(x−2y)y^′ =0  x^2 +y^2 +x^2 −2xyy^′ =0

$${where}\:{is}\:{the}\:\mathrm{1}\:{gone}? \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}+{x}\left({x}−\mathrm{2}{y}\right){y}^{'} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{2}{xyy}^{'} =\mathrm{0} \\ $$

Answered by ali009 last updated on 01/Jun/22

it can be solved using this rule  M(x,y)dx+N(x,y)dy=0  if M_y =N_x   then the D.E solution is   ∫M(x,y)dx + ∫N(x,y)dy − ∫(∂/∂y)(∫M(x,y)dx)dy=c  the rule reference is   erwin kreyszig advanved engineering mathmatics  part (A) / cahpter(1) / 1.4     so  [(x^2 +y^2 +1)dx+x(x−2y)dy=0]÷x^2   (1+(y^2 /x^2 )+(1/x^2 ))dx+(1−((2y)/x))dy=0  M_y =((2y)/x^2 )       N_x =((2y)/x^2 )  ∗∫(1+(y^2 /x^2 )+(1/x^2 ))dx=x−(y^2 /x)−(1/x)  ∗∫(1−((2y)/x))dy=y−(y^2 /x)  ∗∫−((2y)/x)dy=−(y^2 /x)  x+y−((y^2 +1)/x)=c

$${it}\:{can}\:{be}\:{solved}\:{using}\:{this}\:{rule} \\ $$$${M}\left({x},{y}\right){dx}+{N}\left({x},{y}\right){dy}=\mathrm{0} \\ $$$${if}\:{M}_{{y}} ={N}_{{x}} \\ $$$${then}\:{the}\:{D}.{E}\:{solution}\:{is}\: \\ $$$$\int{M}\left({x},{y}\right){dx}\:+\:\int{N}\left({x},{y}\right){dy}\:−\:\int\frac{\partial}{\partial{y}}\left(\int{M}\left({x},{y}\right){dx}\right){dy}={c} \\ $$$${the}\:{rule}\:{reference}\:{is} \\ $$$$\:{erwin}\:{kreyszig}\:{advanved}\:{engineering}\:{mathmatics} \\ $$$${part}\:\left({A}\right)\:/\:{cahpter}\left(\mathrm{1}\right)\:/\:\mathrm{1}.\mathrm{4}\: \\ $$$$ \\ $$$${so} \\ $$$$\left[\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}\right){dx}+{x}\left({x}−\mathrm{2}{y}\right){dy}=\mathrm{0}\right]\boldsymbol{\div}{x}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){dx}+\left(\mathrm{1}−\frac{\mathrm{2}{y}}{{x}}\right){dy}=\mathrm{0} \\ $$$${M}_{{y}} =\frac{\mathrm{2}{y}}{{x}^{\mathrm{2}} }\:\:\:\:\:\:\:{N}_{{x}} =\frac{\mathrm{2}{y}}{{x}^{\mathrm{2}} } \\ $$$$\ast\int\left(\mathrm{1}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){dx}={x}−\frac{{y}^{\mathrm{2}} }{{x}}−\frac{\mathrm{1}}{{x}} \\ $$$$\ast\int\left(\mathrm{1}−\frac{\mathrm{2}{y}}{{x}}\right){dy}={y}−\frac{{y}^{\mathrm{2}} }{{x}} \\ $$$$\ast\int−\frac{\mathrm{2}{y}}{{x}}{dy}=−\frac{{y}^{\mathrm{2}} }{{x}} \\ $$$${x}+{y}−\frac{{y}^{\mathrm{2}} +\mathrm{1}}{{x}}={c} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com