All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 170800 by thfchristopher last updated on 31/May/22
Provethat,foranyrealnumberxandoddpositiveintegern,cosnx=12n+1∑(n−1)/2k=0Ckncos(n−2k)x
Answered by aleks041103 last updated on 04/Jun/22
cosx=eix+e−ix2cosnx=12n(eix+e−ix)n==12n(∑nk=0Ckneikxe−i(n−k)x)==12n(∑nk=0Ckneix(2k−n))∑nk=0Ckneix(2k−n)==∑(n−1)/2k=0Ckneix(2k−n)+∑nk=(n+1)/2Ckneix(2k−n)∑nk=(n+1)/2Ckneix(2k−n)letn−2j=2k−n⇒2j=2n−2k⇒j=n−k,k=n−jj1=n−n+12=n−12j2=n−n=0⇒∑nk=(n+1)/2Ckneix(2k−n)=∑(n−1)/2j=0Cn−jne−ix(2j−n)butCn−jn=Cjnchangingjtok⇒∑nk=(n+1)/2Ckneix(2k−n)=∑(n−1)/2k=0Ckne−ix(2k−n)⇒∑nk=0Ckneix(2k−n)==∑(n−1)/2k=0Ckneix(2k−n)+∑(n−1)/2k=0Ckne−ix(2k−n)==∑(n−1)/2k=0Ckn(eix(2k−n)+e−ix(2k−n))==2∑(n−1)/2k=0Ckncos((2k−n)x)⇒cosnx=12n−1∑(n−1)/2k=0Ckncos((2k−n)x)cosisevenfunctioncosnx=12n−1∑(n−1)/2k=0Ckncos((n−2k)x)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com