Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 170800 by thfchristopher last updated on 31/May/22

Prove that, for any real number x and odd positive integer n,         cos^n x=(1/2^(n+1) )Σ_(k=0) ^((n−1)/2) C_k ^n cos (n−2k)x

Provethat,foranyrealnumberxandoddpositiveintegern,cosnx=12n+1(n1)/2k=0Ckncos(n2k)x

Answered by aleks041103 last updated on 04/Jun/22

cosx=((e^(ix) +e^(−ix) )/2)  cos^n x=(1/2^n )(e^(ix) +e^(−ix) )^n =  =(1/2^n )(Σ_(k=0) ^n C_k ^n e^(ikx) e^(−i(n−k)x) )=  =(1/2^n )(Σ_(k=0) ^n C_k ^n e^(ix(2k−n)) )  Σ_(k=0) ^n C_k ^n e^(ix(2k−n)) =  =Σ_(k=0) ^((n−1)/2) C_k ^n e^(ix(2k−n)) +Σ_(k=(n+1)/2) ^n C_k ^n e^(ix(2k−n))   Σ_(k=(n+1)/2) ^n C_k ^n e^(ix(2k−n))   let n−2j=2k−n  ⇒2j=2n−2k⇒j=n−k, k=n−j  j_1 =n−((n+1)/2)=((n−1)/2)  j_2 =n−n=0  ⇒Σ_(k=(n+1)/2) ^n C_k ^n e^(ix(2k−n)) =Σ_(j=0) ^((n−1)/2) C_(n−j) ^n e^(−ix(2j−n))   but C_(n−j) ^n =C_j ^n   changing j to k  ⇒Σ_(k=(n+1)/2) ^n C_k ^n e^(ix(2k−n)) =Σ_(k=0) ^((n−1)/2) C_k ^n e^(−ix(2k−n))   ⇒Σ_(k=0) ^n C_k ^n e^(ix(2k−n)) =  =Σ_(k=0) ^((n−1)/2) C_k ^n e^(ix(2k−n)) +Σ_(k=0) ^((n−1)/2) C_k ^n e^(−ix(2k−n)) =  =Σ_(k=0) ^((n−1)/2) C_k ^n (e^(ix(2k−n)) +e^(−ix(2k−n)) )=  =2Σ_(k=0) ^((n−1)/2) C_k ^n cos((2k−n)x)  ⇒cos^n x=(1/2^(n−1) )Σ_(k=0) ^((n−1)/2) C_k ^n cos((2k−n)x)  cos is even function  cos^n x=(1/2^(n−1) )Σ_(k=0) ^((n−1)/2) C_k ^n cos((n−2k)x)

cosx=eix+eix2cosnx=12n(eix+eix)n==12n(nk=0Ckneikxei(nk)x)==12n(nk=0Ckneix(2kn))nk=0Ckneix(2kn)==(n1)/2k=0Ckneix(2kn)+nk=(n+1)/2Ckneix(2kn)nk=(n+1)/2Ckneix(2kn)letn2j=2kn2j=2n2kj=nk,k=njj1=nn+12=n12j2=nn=0nk=(n+1)/2Ckneix(2kn)=(n1)/2j=0Cnjneix(2jn)butCnjn=Cjnchangingjtoknk=(n+1)/2Ckneix(2kn)=(n1)/2k=0Ckneix(2kn)nk=0Ckneix(2kn)==(n1)/2k=0Ckneix(2kn)+(n1)/2k=0Ckneix(2kn)==(n1)/2k=0Ckn(eix(2kn)+eix(2kn))==2(n1)/2k=0Ckncos((2kn)x)cosnx=12n1(n1)/2k=0Ckncos((2kn)x)cosisevenfunctioncosnx=12n1(n1)/2k=0Ckncos((n2k)x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com