All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 170802 by Sotoberry last updated on 31/May/22
Answered by thfchristopher last updated on 31/May/22
∫ln(x+x2)dx=∫lnx(x+1)dx=∫lnxdx+∫ln(x+1)dx=xlnx−∫xd(lnx)+xln(x+1)−∫xd[ln(x+1)]=xlnx−∫dx+xln(x+1)−∫xx+1dx=xlnx−x+xln(x+1)−∫(1−1x+1)dx=xlnx−x+xln(x+1)−∫dx+∫1x+1dx=xlnx−2x+(x+1)ln(x+1)+C=lnxx(x+1)x+1−2x+C
Answered by Mathspace last updated on 31/May/22
bypartsI=xln(x+x2)−∫x×2x+1x+x2dx=xln(x+x2)−∫2x+1x+1dx=xln(x+x2)−∫2(x+1)−1x+1dx=xln(x+x2)−2x+ln∣x+1∣+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com