All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 170809 by thean last updated on 31/May/22
Answered by som(math1967) last updated on 31/May/22
limx→0e−1(e2x−1)sin3xx2=6elimx→0(e2x−1)2x×sin3x3x=6e×1=6e
Answered by Mathspace last updated on 31/May/22
f(x)=e2x−1−e−1x2sin(3x)sin(3x)∼3xande2x−1−e−1=e−1(e2x−1)eu∼1+u⇒e2x−1∼2x⇒f(x)∼2xe−1x2×3x=6e⇒limx→0f(x)=6e
Terms of Service
Privacy Policy
Contact: info@tinkutara.com