Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 170832 by Shrinava last updated on 01/Jun/22

Commented by mr W last updated on 01/Jun/22

T=AM+BN≥(√(AB^2 +MN^2 ))=(√(1^2 +2^2 +5^2 +2^2 ))=(√(34))  T_(min) =(√(34))

T=AM+BNAB2+MN2=12+22+52+22=34Tmin=34

Commented by Shrinava last updated on 01/Jun/22

Thank you so much dear professor,  can you explain a little more,  if possible, please

Thankyousomuchdearprofessor,canyouexplainalittlemore,ifpossible,please

Commented by mr W last updated on 02/Jun/22

Commented by mr W last updated on 01/Jun/22

T=AM+BN=A′P+PB′≥A′B′=(√(AB^2 +MN^2 ))

T=AM+BN=AP+PBAB=AB2+MN2

Commented by Shrinava last updated on 02/Jun/22

Thank you very much dear ptofessor

Thankyouverymuchdearptofessor

Commented by mr W last updated on 04/Jun/22

i think my solution above is wrong.

ithinkmysolutionaboveiswrong.

Commented by mr W last updated on 04/Jun/22

Commented by mr W last updated on 04/Jun/22

T=AM+BN=A′N+NB≥A′B  AB^2 =(2−1)^2 +(3−1)^2 +(4+1)^2 =30  MN^2 =2^2 =4  A′B^2 =30+4−2×(√(30))×2 cos θ  sin θ=cos ((π/2)−θ)=((5×1)/( (√(30))))=(5/( (√(30))))  cos θ=(√(1−((25)/(30))))=((√5)/( (√(30))))  A′B^2 =30+4−2×(√(30))×2×((√5)/( (√(30))))=34−4(√5)  ⇒T_(min) =(√(34−4(√5)))

T=AM+BN=AN+NBABAB2=(21)2+(31)2+(4+1)2=30MN2=22=4AB2=30+42×30×2cosθsinθ=cos(π2θ)=5×130=530cosθ=12530=530AB2=30+42×30×2×530=3445Tmin=3445

Commented by Shrinava last updated on 17/Jun/22

Perfect-Amazing Dear Professor

PerfectAmazingDearProfessor

Terms of Service

Privacy Policy

Contact: info@tinkutara.com