All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 170872 by mathlove last updated on 02/Jun/22
Answered by aleks041103 last updated on 04/Jun/22
∏n−1k=1sin(kπn)=∏n−1k=1ekπin−e−kπin2i==(∏n−1k=1ekπin)(∏n−1k=1(1−e−2kπin))(2i)n−1==eπin∑n−1k=1k2n−1(eπi2)n−1∏n−1k=1(1−e−2kπin)==eπinn(n−1)2−(n−1)πi22n−1∏n−1k=1(1−e−2kπin)==12n−1f(1)wheref(x)=∏n−1k=1(x−e−2kπin)f(x)=∏n−1k=1(x−e−2kπin)=∏n−1k=0(x−e−2kπin)x−1bute−2kπinfork=0,...,(n−1)arethen−throotsofunity.⇒∏n−1k=0(x−e−2kπin)=xn−1⇒f(x)=xn−1x−1=1+x+x2+...+xn−1f(1)=1+1+...+1=n⇒∏n−1k=1sin(kπn)=n2n−1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com