All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 170878 by 0731619 last updated on 02/Jun/22
Answered by thfchristopher last updated on 02/Jun/22
∫e2xsin3xdx=12∫sin3xd(e2x)=12e2xsin3x−12∫e2xd(sin3x)=12e2xsin3x−32∫e2xcos3xdx=12e2xsin3x−34∫cos3xd(e2x)=12e2xsin3x−34e2xcos3x+34∫e2xd(cos3x)=12e2xsin3x−34e2xcos3x−94∫e2xsin3xdx⇒134∫e2xsin3xdx=e2x4(2sin3x−3cos3x)+C⇒∫e2xsin3xdx=e2x13(2sin3x−3cos3x)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com