Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 171039 by Kodjo last updated on 06/Jun/22

I_n =∫_0 ^1 (1−u)^n (√(ud(u)))  Demonstrate that ∀n∈N, I_n ≥0

$${I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{u}\right)^{{n}} \sqrt{{ud}\left({u}\right)} \\ $$$${Demonstrate}\:{that}\:\forall{n}\in{N},\:{I}_{{n}} \geq\mathrm{0} \\ $$

Answered by thfchristopher last updated on 07/Jun/22

I_n =∫_0 ^1 (√u)(1−u)^n du  =∫_0 ^1 (√u)(1−u)(1−u)^(n−1) du  =∫_0 ^1 (√u)(1−u)^(n−1) du−∫_0 ^1 u^(3/2) (1−u)^(n−1) du  =I_(n−1) +(1/n)∫_0 ^1 u^(3/2) d[(1−u)^n ]  =I_(n−1) +[(1/n)u^(3/2) (1−u)^n ]_0 ^1 −(1/n)∫_0 ^1 (1−u)^n d(u^(3/2) )  =I_(n−1) −(3/(2n))∫_0 ^1 (√u)(1−u)^n du  =I_(n−1) −(3/(2n))I_n   ∴ (1+(3/(2n)))I_n =I_(n−1)   ⇒I_n =((2n)/(2n+3))I_(n−1)   =(((2n)(2n−2)...(2))/((2n+3)(2n+1)...(5)))I_0   I_0 =∫_0 ^1 (√u)du  =(2/3)[u^(3/2) ]_0 ^1 =(2/3)  ∴ I_n =(((2n)(2n−2)...(2)^2 )/((2n+3)(2n+1)...(5)(3)))

$${I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{u}}\left(\mathrm{1}−{u}\right)^{{n}} {du} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{u}}\left(\mathrm{1}−{u}\right)\left(\mathrm{1}−{u}\right)^{{n}−\mathrm{1}} {du} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{u}}\left(\mathrm{1}−{u}\right)^{{n}−\mathrm{1}} {du}−\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{1}−{u}\right)^{{n}−\mathrm{1}} {du} \\ $$$$={I}_{{n}−\mathrm{1}} +\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{\frac{\mathrm{3}}{\mathrm{2}}} {d}\left[\left(\mathrm{1}−{u}\right)^{{n}} \right] \\ $$$$={I}_{{n}−\mathrm{1}} +\left[\frac{\mathrm{1}}{{n}}{u}^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{1}−{u}\right)^{{n}} \right]_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{u}\right)^{{n}} {d}\left({u}^{\frac{\mathrm{3}}{\mathrm{2}}} \right) \\ $$$$={I}_{{n}−\mathrm{1}} −\frac{\mathrm{3}}{\mathrm{2}{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{u}}\left(\mathrm{1}−{u}\right)^{{n}} {du} \\ $$$$={I}_{{n}−\mathrm{1}} −\frac{\mathrm{3}}{\mathrm{2}{n}}{I}_{{n}} \\ $$$$\therefore\:\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{2}{n}}\right){I}_{{n}} ={I}_{{n}−\mathrm{1}} \\ $$$$\Rightarrow{I}_{{n}} =\frac{\mathrm{2}{n}}{\mathrm{2}{n}+\mathrm{3}}{I}_{{n}−\mathrm{1}} \\ $$$$=\frac{\left(\mathrm{2}{n}\right)\left(\mathrm{2}{n}−\mathrm{2}\right)...\left(\mathrm{2}\right)}{\left(\mathrm{2}{n}+\mathrm{3}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)...\left(\mathrm{5}\right)}{I}_{\mathrm{0}} \\ $$$${I}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{u}}{du} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\left[{u}^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\therefore\:{I}_{{n}} =\frac{\left(\mathrm{2}{n}\right)\left(\mathrm{2}{n}−\mathrm{2}\right)...\left(\mathrm{2}\overset{\mathrm{2}} {\right)}}{\left(\mathrm{2}{n}+\mathrm{3}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)...\left(\mathrm{5}\right)\left(\mathrm{3}\right)} \\ $$$$ \\ $$

Commented by Kodjo last updated on 07/Jun/22

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com