Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 171071 by mathocean1 last updated on 07/Jun/22

justify that ∫_0 ^(+∞) (dt/(1+t^4 )) is convergent.

$${justify}\:{that}\:\int_{\mathrm{0}} ^{+\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:{is}\:{convergent}. \\ $$

Answered by aleks041103 last updated on 07/Jun/22

∫_0 ^∞ (dt/(1+t^4 ))=∫_0 ^1 (dt/(1+t^4 )) + ∫_1 ^∞ (dt/(1+t^4 ))  1+t^4 ≥1 for 0≤t≤1  ⇒(1/(1+t^4 ))≤1⇒∫_0 ^1 (dt/(1+t^4 ))<∫_0 ^1 1dt=1  ⇒∫_0 ^∞ (dt/(1+t^4 ))<1+∫_1 ^∞ (dt/(1+t^4 ))  for t^4 ≥t^2  for t≥1  ⇒(1/(1+t^4 ))≤(1/(1+t^2 ))  ⇒∫_1 ^∞ (dt/(1+t^4 ))≤∫_1 ^∞ (dt/(1+t^2 ))=arctg(t)_1 ^∞ =(π/4)  ⇒∫_0 ^∞ (dt/(1+t^4 ))<1+(π/4)  obv.  (1/(1+t^4 ))>0⇒∫_0 ^∞ (dt/(1+t^4 ))>0  ⇒0<∫_0 ^∞ (dt/(1+t^4 ))<1+π/4  ⇒∫_0 ^∞ (dt/(1+t^4 )) converges

$$\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:+\:\int_{\mathrm{1}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$$$\mathrm{1}+{t}^{\mathrm{4}} \geqslant\mathrm{1}\:{for}\:\mathrm{0}\leqslant{t}\leqslant\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{4}} }\leqslant\mathrm{1}\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }<\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{1}{dt}=\mathrm{1} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }<\mathrm{1}+\int_{\mathrm{1}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$$${for}\:{t}^{\mathrm{4}} \geqslant{t}^{\mathrm{2}} \:{for}\:{t}\geqslant\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{4}} }\leqslant\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\int_{\mathrm{1}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\leqslant\int_{\mathrm{1}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }={arctg}\left({t}\right)_{\mathrm{1}} ^{\infty} =\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }<\mathrm{1}+\frac{\pi}{\mathrm{4}} \\ $$$${obv}. \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{4}} }>\mathrm{0}\Rightarrow\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }>\mathrm{0} \\ $$$$\Rightarrow\mathrm{0}<\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }<\mathrm{1}+\pi/\mathrm{4} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:{converges} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com