All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 171198 by infinityaction last updated on 09/Jun/22
evaluate∫0πlog(a+cosx)dx
Answered by aleks041103 last updated on 09/Jun/22
I(a)=∫0πln(a+cosx)dxI′(a)=∫0πdxa+cos(x)t=tg(x/2)⇒cosx=1−2sin2(x/2)==1−2csc2(x/2)=1−21+ctg2(x/2)==1−21+1tg2(x/2)=1−21+1t2==1−2t21+t2=1−t21+t2x=2arctg(t)⇒dx=2dt1+t2x=0→t=0x=π→t→∞⇒I′(a)=∫0∞2dta(1+t2)+1−t2==2∫0∞dt(a−1)t2+a+1==2a+1∫0∞dt(a−1a+1t)2+1==2a+1a+1a−1∫0∞d(a−1a+1t)(a−1a+1t)2+1==2a2−1π2=πa2−1=I′(a)⇒I(a)=I(1)+π∫1adaa2−1a=cosh(x)da=sinh(x)dx⇒∫daa2−1=∫sinh(x)dxcosh2x−1=x=arccosh(a)⇒I(a)=I(1)+π(arccosh(a)−arccosh(1))I(a)=I(1)+πarccosh(a)I(1)=∫0πln(1+cos(x))dxln(1+cos(x))=ln(2cos2(x/2))==ln(2)+2ln(cos(x/2))⇒I(1)=πln(2)+4∫0π/2ln(cos(x))dx∫0π/2ln(cosx)dx=∫0π/2ln(sinx)dx=i2i=∫0π/2ln(sinxcosx)dx=∫0π/2ln(12sin(2x))dx==−πln(2)2+∫0π/2ln(sin(2x))dx==−πln(2)2+12∫0πln(sin(u))du==−πln(2)2+i=2i⇒i=−πln(2)2⇒I(1)=πln(2)+4(−πln(2)2)=−πln(2)⇒I(a)=π(arccosh(a)−ln(2))cosh(x)=ex+e−x2=t+1t2=k⇒2kt=t2+1⇒t2−2kt+1=0⇒t=ex=2k±4k2−42=k±k2−1⇒arccosh(x)=ln(x+x2−1)∫0πln(a+cos(x))dx=πln(a+a2−12)
Commented by infinityaction last updated on 10/Jun/22
thankyousir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com