Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 171198 by infinityaction last updated on 09/Jun/22

    evaluate          ∫_0 ^( π) log (a+cos x)dx

evaluate0πlog(a+cosx)dx

Answered by aleks041103 last updated on 09/Jun/22

I(a)=∫_0 ^π ln(a+cosx)dx  I ′(a)=∫_0 ^π (dx/(a+cos(x)))  t=tg(x/2)  ⇒cosx=1−2sin^2 (x/2)=  =1−(2/(csc^2 (x/2)))=1−(2/(1+ctg^2 (x/2)))=  =1−(2/(1+(1/(tg^2 (x/2)))))=1−(2/(1+(1/t^2 )))=  =1−((2t^2 )/(1+t^2 ))=((1−t^2 )/(1+t^2 ))  x=2arctg(t)⇒dx=((2dt)/(1+t^2 ))  x=0→t=0  x=π→t→∞  ⇒I ′(a)=∫_0 ^∞ ((2dt)/(a(1+t^2 )+1−t^2 ))=  =2∫_0 ^∞ (dt/((a−1)t^2 +a+1))=  =(2/(a+1))∫_0 ^∞ (dt/( ((√((a−1)/(a+1)))t)^2 +1))=  =(2/(a+1))(√((a+1)/(a−1)))∫_0 ^∞ ((d((√((a−1)/(a+1)))t))/(((√((a−1)/(a+1)))t)^2 +1))=  =(2/( (√(a^2 −1)))) (π/2)=(π/( (√(a^2 −1))))=I ′(a)  ⇒I(a)=I(1)+π∫_1 ^a (da/( (√(a^2 −1))))  a=cosh(x)  da=sinh(x)dx  ⇒∫(da/( (√(a^2 −1))))=∫((sinh(x)dx)/( (√(cosh^2 x−1))))=x=arccosh(a)  ⇒I(a)=I(1)+π(arccosh(a)−arccosh(1))  I(a)=I(1)+π arccosh(a)    I(1)=∫_0 ^π ln(1+cos(x))dx  ln(1+cos(x))=ln(2cos^2 (x/2))=  =ln(2)+2ln(cos(x/2))  ⇒I(1)=πln(2)+4∫_0 ^(π/2) ln(cos(x))dx  ∫_0 ^(π/2) ln(cosx)dx=∫_0 ^(π/2) ln(sinx)dx=i  2i=∫_0 ^(π/2) ln(sinxcosx)dx=∫_0 ^(π/2) ln((1/2)sin(2x))dx=  =−((πln(2))/2)+∫_0 ^(π/2) ln(sin(2x))dx=  =−((πln(2))/2)+(1/2)∫_0 ^π ln(sin(u))du=  =−((πln(2))/2)+i=2i  ⇒i=−((πln(2))/2)  ⇒I(1)=πln(2)+4(−((πln(2))/2))=−πln(2)  ⇒I(a)=π(arccosh(a)−ln(2))  cosh(x)=((e^x +e^(−x) )/2)=((t+(1/t))/2)=k  ⇒2kt=t^2 +1  ⇒t^2 −2kt+1=0  ⇒t=e^x =((2k±(√(4k^2 −4)))/2)=k±(√(k^2 −1))  ⇒arccosh(x)=ln(x+(√(x^2 −1)))  ∫_0 ^( π) ln(a+cos(x))dx=π ln(((a+(√(a^2 −1)))/2))

I(a)=0πln(a+cosx)dxI(a)=0πdxa+cos(x)t=tg(x/2)cosx=12sin2(x/2)==12csc2(x/2)=121+ctg2(x/2)==121+1tg2(x/2)=121+1t2==12t21+t2=1t21+t2x=2arctg(t)dx=2dt1+t2x=0t=0x=πtI(a)=02dta(1+t2)+1t2==20dt(a1)t2+a+1==2a+10dt(a1a+1t)2+1==2a+1a+1a10d(a1a+1t)(a1a+1t)2+1==2a21π2=πa21=I(a)I(a)=I(1)+π1adaa21a=cosh(x)da=sinh(x)dxdaa21=sinh(x)dxcosh2x1=x=arccosh(a)I(a)=I(1)+π(arccosh(a)arccosh(1))I(a)=I(1)+πarccosh(a)I(1)=0πln(1+cos(x))dxln(1+cos(x))=ln(2cos2(x/2))==ln(2)+2ln(cos(x/2))I(1)=πln(2)+40π/2ln(cos(x))dx0π/2ln(cosx)dx=0π/2ln(sinx)dx=i2i=0π/2ln(sinxcosx)dx=0π/2ln(12sin(2x))dx==πln(2)2+0π/2ln(sin(2x))dx==πln(2)2+120πln(sin(u))du==πln(2)2+i=2ii=πln(2)2I(1)=πln(2)+4(πln(2)2)=πln(2)I(a)=π(arccosh(a)ln(2))cosh(x)=ex+ex2=t+1t2=k2kt=t2+1t22kt+1=0t=ex=2k±4k242=k±k21arccosh(x)=ln(x+x21)0πln(a+cos(x))dx=πln(a+a212)

Commented by infinityaction last updated on 10/Jun/22

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com