Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 171235 by thean last updated on 10/Jun/22

Commented by eman_64 last updated on 10/Jun/22

Commented by cortano1 last updated on 11/Jun/22

 lim_(x→(π/3)) ((−(√3) sin x−cos x)/3)=(1/3)(−(3/2)−(1/2))  = −(2/3)

limxπ33sinxcosx3=13(3212)=23

Answered by Mathspace last updated on 10/Jun/22

f(x)=(((√3)cosx−sinx)/(3(x−(π/3))))  we do the changement x−(π/3)=t  (x→(π/3)⇔t→0) and  f(x)=f(t+(π/3))=(((√3)cos(t+(π/3))−sin(t+(π/3)))/(3t))  =(((√3){(1/2)cost−((√3)/2)sint}−{(1/2)sint +((√3)/2)cost})/(3t))  =((((√3)/2)cost−(3/2)sint−(1/2)sint−((√3)/2)cost)/(3t))  =((−2sint)/(3t)) ⇒  lim_(t→0) ((−2sint)/(3t))=−(2/3)lim_(t→0) ((sint)/t)  =−(2/3)×1=−(2/3) ⇒  lim_(x→(π/3)) f(x)=−(2/3)  hospital method  lim_(x→(π/3))   f(x)=lim_(x→(π/3))  ((−(√3)sinx−cosx)/3)  =((−(√3).((√3)/2)−(1/2))/3)=((−(3/2)−(1/2))/3)=−(2/3)

f(x)=3cosxsinx3(xπ3)wedothechangementxπ3=t(xπ3t0)andf(x)=f(t+π3)=3cos(t+π3)sin(t+π3)3t=3{12cost32sint}{12sint+32cost}3t=32cost32sint12sint32cost3t=2sint3tlimt02sint3t=23limt0sintt=23×1=23limxπ3f(x)=23hospitalmethodlimxπ3f(x)=limxπ33sinxcosx3=3.32123=32123=23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com