All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 171260 by udaythool last updated on 11/Jun/22
Changetopolarcoordinates:―∫04a∫y2/4aa(x2−y2x2+y2)dxdy
Answered by udaythool last updated on 13/Jun/22
Solution:Letf≡(x2−y2x2+y2)⇒f=rcos2θ⇒I=∫04a∫y2/4aafdxdy=∫02a∫y2/4aafdxdy−∫2a4a∫ay2/4afdxdy=∫∫R1−∫∫R2=I1−I2whereR1≡0≤y≤2a,y2/4a≤x≤aandR2≡2a≤y≤4a,a≤x≤y2/4aForpolarcoordinatesweshouldhavetodividebothR1intoA,BandR2intoC,Dsubregionsbyalinefromoriginand(a,2a).ThusI1=IA+IBandI2=IC+IDForA,0≤θ≤tan−12and0≤r≤a/cosθ⇒IA=∫0tan−12∫0a/cosθrcos2θdrdθ=a2(tan−12−1).ForB,tan−12≤θ≤π/2and0≤r≤4acosθ/sin2θ⇒IB=∫tan−12π/2∫04acosθ/sin2θrcos2θdrdθIB=8a2(π−23/24−2tan−12).ForC,π/4≤θ≤tan−12and4acosθ/sin2θ≤r≤4a/sinθ⇒IC=∫π/4tan−12∫4acosθ/sin2θ4a/sinθrcos2θdrdθIC=8a2(π+29/24−4tan−12).AndforD,tan−12≤θ≤tan−14anda/cosθ≤r≤4a/sinθ⇒ID=∫tan−12tan−14∫a/cosθ4a/sinθrcos2θdrdθID=a2(3+174tan−12−17tan−14).∴I=(−643)a2+17a2tan−14
Terms of Service
Privacy Policy
Contact: info@tinkutara.com