Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 171260 by udaythool last updated on 11/Jun/22

Change to polar coordinates:  ∫^(  4a) _0 ∫_(y^2 /4a)  ^a   (((x^2 −y^2 )/(x^2 +y^2 ))) dx dy

$$\underline{{Change}\:{to}\:{polar}\:{coordinates}:} \\ $$$$\underset{\mathrm{0}} {\int}^{\:\:\mathrm{4}{a}} \underset{{y}^{\mathrm{2}} /\mathrm{4}{a}} {\int}\overset{{a}} {\:}\:\:\left(\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)\:{dx}\:{dy} \\ $$

Answered by udaythool last updated on 13/Jun/22

Solution: Let f≡ (((x^2 −y^2 )/(x^2 +y^2 )))⇒f = rcos 2θ  ⇒I=∫_0 ^( 4a) ∫_(y^2 /4a) ^(    a) f dxdy   =∫_0 ^( 2a) ∫_(y^2 /4a) ^(    a) f dxdy −∫_(2a) ^( 4a) ∫_a ^(  y^2 /4a) f dxdy  =∫∫_(R_1 )   − ∫∫_(R_2 )  =I_1 −I_2   where R_1 ≡0≤y≤2a, y^2 /4a≤x≤a  and R_2 ≡2a≤y≤4a,   a≤x≤ y^2 /4a  For polar coordinates we should have  to divide both R_1  into A, B and R_2  into C, D  subregions by a line from origin and (a, 2a).   Thus I_1 =I_A +I_B  and I_2 =I_C +I_D   For A, 0≤θ≤tan^(−1) 2 and 0≤r≤a/cos θ  ⇒I_A =∫_0 ^(tan^(−1) 2) ∫_0 ^(a/cos θ) r cos2θ dr dθ =a^2 (tan^(−1) 2−1).  For B, tan^(−1) 2≤θ≤π/2 and 0≤r≤4acos θ/sin^2 θ  ⇒I_B =∫_(tan^(−1) 2) ^(π/2) ∫_0 ^(4acos θ/sin^2 θ) r cos2θ dr dθ  I_B =8a^2 (π−23/24−2tan^(−1) 2).  For C, π/4≤θ≤tan^(−1) 2 and 4acos θ/sin^2 θ≤r≤4a/sin θ  ⇒I_C =∫_(π/4) ^(tan^(−1) 2) ∫_(4acos θ/sin^2 θ) ^(4a/sin θ) r cos2θ dr dθ  I_C =8a^2 (π+29/24−4tan^(−1) 2).  And for D, tan^(−1) 2≤θ≤tan^(−1) 4 and a/cos θ≤r≤4a/sin θ  ⇒I_D =∫_(tan^(−1) 2) ^(tan^(−1) 4) ∫_(a/cos θ) ^(4a/sin θ) r cos2θ dr dθ  I_D =a^2 (3+174tan^(−1) 2−17tan^(−1) 4).  ∴ I=(((−64)/3))a^2 +17a^2 tan^(−1) 4

$$\mathrm{Solution}:\:\mathrm{Let}\:{f}\equiv\:\left(\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)\Rightarrow{f}\:=\:{r}\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\Rightarrow{I}=\int_{\mathrm{0}} ^{\:\mathrm{4}{a}} \int_{{y}^{\mathrm{2}} /\mathrm{4}{a}} ^{\:\:\:\:{a}} {f}\:{dxdy}\: \\ $$$$=\int_{\mathrm{0}} ^{\:\mathrm{2}{a}} \int_{{y}^{\mathrm{2}} /\mathrm{4}{a}} ^{\:\:\:\:{a}} {f}\:{dxdy}\:−\int_{\mathrm{2}{a}} ^{\:\mathrm{4}{a}} \int_{{a}} ^{\:\:{y}^{\mathrm{2}} /\mathrm{4}{a}} {f}\:{dxdy} \\ $$$$=\underset{{R}_{\mathrm{1}} } {\int\int}\:\:−\:\underset{{R}_{\mathrm{2}} } {\int\int}\:={I}_{\mathrm{1}} −{I}_{\mathrm{2}} \\ $$$$\mathrm{where}\:{R}_{\mathrm{1}} \equiv\mathrm{0}\leq{y}\leq\mathrm{2}{a},\:{y}^{\mathrm{2}} /\mathrm{4}{a}\leq{x}\leq{a} \\ $$$$\mathrm{and}\:{R}_{\mathrm{2}} \equiv\mathrm{2}{a}\leq{y}\leq\mathrm{4}{a},\:\:\:{a}\leq{x}\leq\:{y}^{\mathrm{2}} /\mathrm{4}{a} \\ $$$$\mathrm{For}\:\mathrm{polar}\:\mathrm{coordinates}\:\mathrm{we}\:\mathrm{should}\:\mathrm{have} \\ $$$$\mathrm{to}\:\mathrm{divide}\:\mathrm{both}\:{R}_{\mathrm{1}} \:\mathrm{into}\:{A},\:{B}\:\mathrm{and}\:{R}_{\mathrm{2}} \:\mathrm{into}\:{C},\:{D} \\ $$$$\mathrm{subregions}\:\mathrm{by}\:\mathrm{a}\:\mathrm{line}\:\mathrm{from}\:\mathrm{origin}\:\mathrm{and}\:\left(\mathrm{a},\:\mathrm{2}{a}\right).\: \\ $$$$\mathrm{Thus}\:{I}_{\mathrm{1}} ={I}_{{A}} +{I}_{{B}} \:\mathrm{and}\:{I}_{\mathrm{2}} ={I}_{{C}} +{I}_{{D}} \\ $$$$\mathrm{For}\:{A},\:\mathrm{0}\leq\theta\leq\mathrm{tan}^{−\mathrm{1}} \mathrm{2}\:\mathrm{and}\:\mathrm{0}\leq{r}\leq{a}/\mathrm{cos}\:\theta \\ $$$$\Rightarrow{I}_{{A}} =\int_{\mathrm{0}} ^{\mathrm{tan}^{−\mathrm{1}} \mathrm{2}} \int_{\mathrm{0}} ^{{a}/\mathrm{cos}\:\theta} {r}\:\mathrm{cos2}\theta\:{dr}\:{d}\theta\:={a}^{\mathrm{2}} \left(\mathrm{tan}^{−\mathrm{1}} \mathrm{2}−\mathrm{1}\right). \\ $$$$\mathrm{For}\:{B},\:\mathrm{tan}^{−\mathrm{1}} \mathrm{2}\leq\theta\leq\pi/\mathrm{2}\:\mathrm{and}\:\mathrm{0}\leq{r}\leq\mathrm{4}{a}\mathrm{cos}\:\theta/\mathrm{sin}^{\mathrm{2}} \theta \\ $$$$\Rightarrow{I}_{{B}} =\int_{\mathrm{tan}^{−\mathrm{1}} \mathrm{2}} ^{\pi/\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{4}{a}\mathrm{cos}\:\theta/\mathrm{sin}^{\mathrm{2}} \theta} {r}\:\mathrm{cos2}\theta\:{dr}\:{d}\theta \\ $$$${I}_{{B}} =\mathrm{8}{a}^{\mathrm{2}} \left(\pi−\mathrm{23}/\mathrm{24}−\mathrm{2tan}^{−\mathrm{1}} \mathrm{2}\right). \\ $$$$\mathrm{For}\:{C},\:\pi/\mathrm{4}\leq\theta\leq\mathrm{tan}^{−\mathrm{1}} \mathrm{2}\:\mathrm{and}\:\mathrm{4}{a}\mathrm{cos}\:\theta/\mathrm{sin}^{\mathrm{2}} \theta\leq{r}\leq\mathrm{4}{a}/\mathrm{sin}\:\theta \\ $$$$\Rightarrow{I}_{{C}} =\int_{\pi/\mathrm{4}} ^{\mathrm{tan}^{−\mathrm{1}} \mathrm{2}} \int_{\mathrm{4}{a}\mathrm{cos}\:\theta/\mathrm{sin}^{\mathrm{2}} \theta} ^{\mathrm{4}{a}/\mathrm{sin}\:\theta} {r}\:\mathrm{cos2}\theta\:{dr}\:{d}\theta \\ $$$${I}_{{C}} =\mathrm{8}{a}^{\mathrm{2}} \left(\pi+\mathrm{29}/\mathrm{24}−\mathrm{4tan}^{−\mathrm{1}} \mathrm{2}\right). \\ $$$$\mathrm{And}\:\mathrm{for}\:{D},\:\mathrm{tan}^{−\mathrm{1}} \mathrm{2}\leq\theta\leq\mathrm{tan}^{−\mathrm{1}} \mathrm{4}\:\mathrm{and}\:{a}/\mathrm{cos}\:\theta\leq{r}\leq\mathrm{4}{a}/\mathrm{sin}\:\theta \\ $$$$\Rightarrow{I}_{{D}} =\int_{\mathrm{tan}^{−\mathrm{1}} \mathrm{2}} ^{\mathrm{tan}^{−\mathrm{1}} \mathrm{4}} \int_{{a}/\mathrm{cos}\:\theta} ^{\mathrm{4}{a}/\mathrm{sin}\:\theta} {r}\:\mathrm{cos2}\theta\:{dr}\:{d}\theta \\ $$$${I}_{{D}} ={a}^{\mathrm{2}} \left(\mathrm{3}+\mathrm{174tan}^{−\mathrm{1}} \mathrm{2}−\mathrm{17tan}^{−\mathrm{1}} \mathrm{4}\right). \\ $$$$\therefore\:{I}=\left(\frac{−\mathrm{64}}{\mathrm{3}}\right){a}^{\mathrm{2}} +\mathrm{17}{a}^{\mathrm{2}} \mathrm{tan}^{−\mathrm{1}} \mathrm{4} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com