Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 171314 by Mastermind last updated on 12/Jun/22

If C_r , C_s  are cyclic groups such that  g.c.d(r,s)=1, then show that C_r ×C_s  is  a cyclic group.    Mastermind

$${If}\:{C}_{{r}} ,\:{C}_{{s}} \:{are}\:{cyclic}\:{groups}\:{such}\:{that} \\ $$$${g}.{c}.{d}\left({r},{s}\right)=\mathrm{1},\:{then}\:{show}\:{that}\:{C}_{{r}} ×{C}_{{s}} \:{is} \\ $$$${a}\:{cyclic}\:{group}. \\ $$$$ \\ $$$${Mastermind} \\ $$

Answered by mindispower last updated on 12/Jun/22

C_r  cyclic ⇒∃a∈C_r ...such ∀g∈C_r  ∃n∈{0,....r−1}  a^n =g  C_s cyclic ⇒∃b∈C_s ..such ∀g′∈C_s .∃m∈{0,....s−1}  b^m =g′  we use standar definition of product of/Groups  card (C_r ∗C_s )≤rs  (a,b)∗.....(a,b)...(rs) =((a^r )^s ,(b^s )^r )=(e,e′)Times  (a^x ,b^x )=(e,e′)⇒r∣x,s∣x⇒rs∣x...gcd(r,s)=1  ⇒rs∣card (C_r ∗C_s )⇒card (C_r ∗C_s )=rs  and C_r ∗C_s =<(a,b) >

$${C}_{{r}} \:{cyclic}\:\Rightarrow\exists{a}\in{C}_{{r}} ...{such}\:\forall{g}\in{C}_{{r}} \:\exists{n}\in\left\{\mathrm{0},....{r}−\mathrm{1}\right\} \\ $$$${a}^{{n}} ={g} \\ $$$${C}_{{s}} {cyclic}\:\Rightarrow\exists{b}\in{C}_{{s}} ..{such}\:\forall{g}'\in{C}_{{s}} .\exists{m}\in\left\{\mathrm{0},....{s}−\mathrm{1}\right\} \\ $$$${b}^{{m}} ={g}' \\ $$$${we}\:{use}\:{standar}\:{definition}\:{of}\:{product}\:{of}/{Groups} \\ $$$${card}\:\left({C}_{{r}} \ast{C}_{{s}} \right)\leqslant{rs} \\ $$$$\left({a},{b}\right)\ast.....\left({a},{b}\right)...\left({rs}\right)\:=\left(\left({a}^{{r}} \right)^{{s}} ,\left({b}^{{s}} \right)^{{r}} \right)=\left({e},{e}'\right){Times} \\ $$$$\left({a}^{{x}} ,{b}^{{x}} \right)=\left({e},{e}'\right)\Rightarrow{r}\mid{x},{s}\mid{x}\Rightarrow{rs}\mid{x}...{gcd}\left({r},{s}\right)=\mathrm{1} \\ $$$$\Rightarrow{rs}\mid{card}\:\left({C}_{{r}} \ast{C}_{{s}} \right)\Rightarrow{card}\:\left({C}_{{r}} \ast{C}_{{s}} \right)={rs} \\ $$$${and}\:{C}_{{r}} \ast{C}_{{s}} =<\left({a},{b}\right)\:> \\ $$$$ \\ $$$$ \\ $$

Commented by Mastermind last updated on 14/Jun/22

Thanks

$${Thanks} \\ $$

Commented by mindispower last updated on 19/Jun/22

withe pleasur

$${withe}\:{pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com