Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 171484 by infinityaction last updated on 16/Jun/22

      let f(x) = x+(2/(1.3))x^3 +((2.4)/(1.3.5))x^5 +((2.4.6)/(1.3.5.7))x^7 +.........      ∀x∈(0,1)  the value of  f((1/( (√2)))) = ?

letf(x)=x+21.3x3+2.41.3.5x5+2.4.61.3.5.7x7+.........x(0,1)thevalueoff(12)=?

Commented by mr W last updated on 16/Jun/22

i got  f(x)=((sin^(−1) x)/( (√(1−x^2 ))))  f((1/( (√2))))=(((√2)π)/4)

igotf(x)=sin1x1x2f(12)=2π4

Answered by mr W last updated on 16/Jun/22

f(x)=x+(2/(1.3))x^3 +((2.4)/(1.3.5))x^5 +((2.4.6)/(1.3.5.7))x^7 +...  xf(x)=x^2 +(2/(1.3))x^4 +((2.4)/(1.3.5))x^6 +((2.4.6)/(1.3.5.7))x^8 +...  ∫_0 ^x xf(x)dx=(1/3)x^3 +(2/(1.3.5))x^5 +((2.4)/(1.3.5.7))x^7 +((2.4.6)/(1.3.5.7.9))x^9 +...  (1/x)∫_0 ^x xf(x)dx=(1/(1.3))x^2 +(2/(1.3.5))x^4 +((2.4)/(1.3.5.7))x^6 +((2.4.6)/(1.3.5.7.9))x^8 +...  [(1/x)∫_0 ^x xf(x)dx]′=(2/(1.3))x+((2.4)/(1.3.5))x^3 +((2.4.6)/(1.3.5.7))x^5 +((2.4.6.8)/(1.3.5.7.9))x^7 +...  x^2 [(1/x)∫_0 ^x xf(x)dx]′=(2/(1.3))x^3 +((2.4)/(1.3.5))x^5 +((2.4.6)/(1.3.5.7))x^7 +((2.4.6.8)/(1.3.5.7.9))x^9 +...  x^2 [(1/x)∫_0 ^x xf(x)dx]′=−x+x+(2/(1.3))x^3 +((2.4)/(1.3.5))x^5 +((2.4.6)/(1.3.5.7))x^7 +((2.4.6.8)/(1.3.5.7.9))x^9 +...  x^2 [(1/x)∫_0 ^x xf(x)dx]′=−x+f(x)  x^2 [−(1/x^2 )∫_0 ^x xf(x)dx+f(x)]=−x+f(x)  ∫_0 ^x xf(x)dx=(x^2 −1)f(x)+x  xf(x)=2xf(x)+(x^2 −1)f′(x)+1  (x^2 −1)f′(x)+xf(x)+1=0  ⇒f′(x)+(x/(x^2 −1))f(x)=(1/(1−x^2 ))  I=e^(∫((x dx)/(x^2 −1))) =e^((ln ∣1−x^2 ∣)/2) =(√(1−x^2 ))  ⇒f(x)=(1/( (√(1−x^2 ))))∫((√(1−x^2 ))/( 1−x^2 ))dx=((sin^(−1) x)/( (√(1−x^2 ))))+C  f(0)=0 ⇒C=0  ⇒f(x)=((sin^(−1) x)/( (√(1−x^2 ))))  ⇒f((1/( (√2))))=(((√2)π)/4)

f(x)=x+21.3x3+2.41.3.5x5+2.4.61.3.5.7x7+...xf(x)=x2+21.3x4+2.41.3.5x6+2.4.61.3.5.7x8+...0xxf(x)dx=13x3+21.3.5x5+2.41.3.5.7x7+2.4.61.3.5.7.9x9+...1x0xxf(x)dx=11.3x2+21.3.5x4+2.41.3.5.7x6+2.4.61.3.5.7.9x8+...[1x0xxf(x)dx]=21.3x+2.41.3.5x3+2.4.61.3.5.7x5+2.4.6.81.3.5.7.9x7+...x2[1x0xxf(x)dx]=21.3x3+2.41.3.5x5+2.4.61.3.5.7x7+2.4.6.81.3.5.7.9x9+...x2[1x0xxf(x)dx]=x+x+21.3x3+2.41.3.5x5+2.4.61.3.5.7x7+2.4.6.81.3.5.7.9x9+...x2[1x0xxf(x)dx]=x+f(x)x2[1x20xxf(x)dx+f(x)]=x+f(x)0xxf(x)dx=(x21)f(x)+xxf(x)=2xf(x)+(x21)f(x)+1(x21)f(x)+xf(x)+1=0f(x)+xx21f(x)=11x2I=exdxx21=eln1x22=1x2f(x)=11x21x21x2dx=sin1x1x2+Cf(0)=0C=0f(x)=sin1x1x2f(12)=2π4

Commented by infinityaction last updated on 16/Jun/22

thank you sir  nice solution

thankyousirnicesolution

Commented by Tawa11 last updated on 16/Jun/22

Great sir.

Greatsir.

Answered by qaz last updated on 16/Jun/22

f(x)=Σ_(k=0) ^∞ (((2k)!!)/((2k+1)!!))x^(2k+1) =Σ_(k=0) ^∞ x^(2k+1) ∫_0 ^(π/2) sin^(2k+1) tdt=∫_0 ^(π/2) ((xsin t)/(1−(xsin t)^2 ))dt  ⇒f((1/( (√2))))=(1/( (√2)))∫_0 ^(π/2) ((sin t)/(1−(1/2)sin^2 t))dt  =(√2)∫_0 ^(π/2) ((sin t)/(1+cos^2 t))dt  =(√2)∙arctan (cos t)∣_(π/2) ^0   =(((√2)π)/4)

f(x)=k=0(2k)!!(2k+1)!!x2k+1=k=0x2k+10π/2sin2k+1tdt=0π/2xsint1(xsint)2dtf(12)=120π/2sint112sin2tdt=20π/2sint1+cos2tdt=2arctan(cost)π/20=2π4

Commented by infinityaction last updated on 16/Jun/22

amazing solution sir

amazingsolutionsir

Answered by infinityaction last updated on 16/Jun/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com