Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 171560 by mnjuly1970 last updated on 17/Jun/22

       Nice   Integral               Ω = ∫_0 ^( (π/4)) (( tan(x))/(( cos^( 2) (x)  + 2sin^( 2) (x))))dx =

NiceIntegralΩ=0π4tan(x)(cos2(x)+2sin2(x))dx=

Commented by infinityaction last updated on 17/Jun/22

      Ω   =  ∫_0 ^(π/4)  ((tan x sec^2 x)/(1+2tan^2 x))dx     tan x = p → sec^2 x dx  = dp         Ω  = ∫_0 ^1 (p/(1+2p^2 ))dp         1+2p^2   =  t   →   4pdp = dt          Ω  =   (1/4)∫_1 ^3 (dt/(t ))  ⇒ (1/4)[log t]_1 ^3           Ω  = (1/4)log 3

Ω=0π4tanxsec2x1+2tan2xdxtanx=psec2xdx=dpΩ=01p1+2p2dp1+2p2=t4pdp=dtΩ=1413dtt14[logt]13Ω=14log3

Answered by floor(10²Eta[1]) last updated on 18/Jun/22

t=tg((x/2))  cos(x)=1−2sin^2 ((x/2))  1−(2/(csc^2 ((x/2))))=1−(2/(1+cotg^2 ((x/2))))  1−(2/(1+(1/t^2 )))=1−((2t^2 )/(t^2 +1))=((1−t^2 )/(1+t^2 ))  ⇒sin(x)=((2t)/(1+t^2 ))    ⇒((tgx)/(cos^2 x+2sin^2 x))=((tgx)/(1+sin^2 x))=((tgx)/(2−cos^2 x))  =((sinx)/(2cosx−cos^3 x))=(((2t)/(1+t^2 ))/(2(((1−t^2 )/(1+t^2 )))−(((1−t^2 )/(1+t^2 )))^3 ))  =((2t(1+t^2 )^2 )/(2(1−t^2 )(1+t^2 )^2 −(1−t^2 )^3 ))=((2t(1+t^2 )^2 )/((1−t^2 )[1+6t^2 +t^4 ]))    ⇒∫_0 ^(tg(π/8)) ((2t(1+t^2 )^2 )/((1−t^2 )(t^4 +6t^2 +1)))dx  t^2 =u  2tdt=du  ∫_0 ^(tg^2 (π/8)) (((1+u)^2 )/((1−u)(u^2 +6u+1)))du  =(1/2)∫_0 ^(tg^2 (π/8)) (du/(1−u))−(1/2)∫_0 ^(tg^2 (π/8)) ((u−1)/(u^2 +6u+1))du  =−(1/2)ln∣1−u∣_0 ^(tg^2 (π/8)) −(1/2)∫_0 ^(tg^2 (π/8)) ((u−1)/((u+3)^2 −8))du  =−(1/2)ln∣1−tg^2 (π/8)∣−(1/2)∫_0 ^(tg^2 (π/8)) ((u−1)/((u+3+2(√2))(u+3−2(√2))))du  =−(1/2)ln∣1−tg^2 (π/8)∣−(1/2)(((1+(√2))/2))∫_0 ^(tg^2 (π/8)) (du/(u+3+2(√2)))−(1/2)(((1−(√2))/2))∫_0 ^(tg^2 (π/8)) (du/(u+3−2(√2)))  =−(1/2)ln∣1−tg^2 (π/8)∣−(1/2)(((1+(√2))/2))∫_0 ^(tg^2 (π/8)) (du/(u+3+2(√2)))−(1/2)(((1−(√2))/2))∫_0 ^(tg^2 (π/8)) (du/(u+3−2(√2)))  =−(1/2)ln∣1−tg^2 (π/8)∣−((1+(√2))/4)[ln∣u+3+2(√2)∣]_0 ^(tg^2 (π/8)) −((1−(√2))/4)[ln∣u+3−2(√2)∣]_0 ^(tg^2 (π/8))   =−(1/2)ln∣1−tg^2 (π/8)∣−((1+(√2))/4)ln∣tg^2 (π/8)+3+2(√2)∣−((1−(√2))/4)ln∣tg^2 (π/8)+3−2(√2)∣+((√2)/2)ln(3+2(√2))

t=tg(x2)cos(x)=12sin2(x2)12csc2(x2)=121+cotg2(x2)121+1t2=12t2t2+1=1t21+t2sin(x)=2t1+t2tgxcos2x+2sin2x=tgx1+sin2x=tgx2cos2x=sinx2cosxcos3x=2t1+t22(1t21+t2)(1t21+t2)3=2t(1+t2)22(1t2)(1+t2)2(1t2)3=2t(1+t2)2(1t2)[1+6t2+t4]0tgπ82t(1+t2)2(1t2)(t4+6t2+1)dxt2=u2tdt=du0tg2π8(1+u)2(1u)(u2+6u+1)du=120tg2π8du1u120tg2π8u1u2+6u+1du=12ln1u0tg2π8120tg2π8u1(u+3)28du=12ln1tg2π8120tg2π8u1(u+3+22)(u+322)du=12ln1tg2π812(1+22)0tg2π8duu+3+2212(122)0tg2π8duu+322=12ln1tg2π812(1+22)0tg2π8duu+3+2212(122)0tg2π8duu+322=12ln1tg2π81+24[lnu+3+22]0tg2π8124[lnu+322]0tg2π8=12ln1tg2π81+24lntg2π8+3+22124lntg2π8+322+22ln(3+22)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com