All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 171560 by mnjuly1970 last updated on 17/Jun/22
NiceIntegralΩ=∫0π4tan(x)(cos2(x)+2sin2(x))dx=
Commented by infinityaction last updated on 17/Jun/22
Ω=∫0π4tanxsec2x1+2tan2xdxtanx=p→sec2xdx=dpΩ=∫01p1+2p2dp1+2p2=t→4pdp=dtΩ=14∫13dtt⇒14[logt]13Ω=14log3
Answered by floor(10²Eta[1]) last updated on 18/Jun/22
t=tg(x2)cos(x)=1−2sin2(x2)1−2csc2(x2)=1−21+cotg2(x2)1−21+1t2=1−2t2t2+1=1−t21+t2⇒sin(x)=2t1+t2⇒tgxcos2x+2sin2x=tgx1+sin2x=tgx2−cos2x=sinx2cosx−cos3x=2t1+t22(1−t21+t2)−(1−t21+t2)3=2t(1+t2)22(1−t2)(1+t2)2−(1−t2)3=2t(1+t2)2(1−t2)[1+6t2+t4]⇒∫0tgπ82t(1+t2)2(1−t2)(t4+6t2+1)dxt2=u2tdt=du∫0tg2π8(1+u)2(1−u)(u2+6u+1)du=12∫0tg2π8du1−u−12∫0tg2π8u−1u2+6u+1du=−12ln∣1−u∣0tg2π8−12∫0tg2π8u−1(u+3)2−8du=−12ln∣1−tg2π8∣−12∫0tg2π8u−1(u+3+22)(u+3−22)du=−12ln∣1−tg2π8∣−12(1+22)∫0tg2π8duu+3+22−12(1−22)∫0tg2π8duu+3−22=−12ln∣1−tg2π8∣−12(1+22)∫0tg2π8duu+3+22−12(1−22)∫0tg2π8duu+3−22=−12ln∣1−tg2π8∣−1+24[ln∣u+3+22∣]0tg2π8−1−24[ln∣u+3−22∣]0tg2π8=−12ln∣1−tg2π8∣−1+24ln∣tg2π8+3+22∣−1−24ln∣tg2π8+3−22∣+22ln(3+22)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com