Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 1716 by Rasheed Soomro last updated on 02/Sep/15

Determine interval A of real numbers for which  a^(a+1) ≥(a+1)^a       whenever a∈A

$${Determine}\:{interval}\:\boldsymbol{\mathrm{A}}\:{of}\:{real}\:{numbers}\:{for}\:{which} \\ $$$${a}^{{a}+\mathrm{1}} \geqslant\left({a}+\mathrm{1}\right)^{{a}} \:\:\:\:\:\:{whenever}\:{a}\in\boldsymbol{\mathrm{A}} \\ $$

Commented by Rasheed Ahmad last updated on 03/Sep/15

a^(a+1) ≥(a+1)^a   a^a .a≥a^a (1+(1/a))^a   We assume here a>0 because  for a<0   a^(a+1) ,(a+1)^a  may be   imaginary. (At a=0 the statement  is false)  So a>0⇒a^a >0  a^a .a≥a^a (1+(1/a))^a ⇒(1+(1/a))^a ≤a  (1+(1/a))^a ≤(a^(1/a) )^a   ⇒1+(1/a)≤a^(1/a)   a^(1/a) − (1/a) − 1≥ 0  a^(1/a) − (1/a) − 1=0 ∨ a^(1/a) − (1/a) − 1>0  [[With the help of graphing calculator  a≥2.293....]]  By using numeical methods....

$${a}^{{a}+\mathrm{1}} \geqslant\left({a}+\mathrm{1}\right)^{{a}} \\ $$$${a}^{{a}} .{a}\geqslant{a}^{{a}} \left(\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)^{{a}} \\ $$$${We}\:{assume}\:{here}\:{a}>\mathrm{0}\:{because} \\ $$$${for}\:{a}<\mathrm{0}\:\:\:{a}^{{a}+\mathrm{1}} ,\left({a}+\mathrm{1}\right)^{{a}} \:{may}\:{be}\: \\ $$$${imaginary}.\:\left({At}\:{a}=\mathrm{0}\:{the}\:{statement}\right. \\ $$$$\left.{is}\:{false}\right) \\ $$$${So}\:{a}>\mathrm{0}\Rightarrow{a}^{{a}} >\mathrm{0} \\ $$$${a}^{{a}} .{a}\geqslant{a}^{{a}} \left(\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)^{{a}} \Rightarrow\left(\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)^{{a}} \leqslant{a} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)^{{a}} \leqslant\left({a}^{\frac{\mathrm{1}}{{a}}} \right)^{{a}} \\ $$$$\Rightarrow\mathrm{1}+\frac{\mathrm{1}}{{a}}\leqslant{a}^{\frac{\mathrm{1}}{{a}}} \\ $$$${a}^{\frac{\mathrm{1}}{{a}}} −\:\frac{\mathrm{1}}{{a}}\:−\:\mathrm{1}\geqslant\:\mathrm{0} \\ $$$${a}^{\frac{\mathrm{1}}{{a}}} −\:\frac{\mathrm{1}}{{a}}\:−\:\mathrm{1}=\mathrm{0}\:\vee\:{a}^{\frac{\mathrm{1}}{{a}}} −\:\frac{\mathrm{1}}{{a}}\:−\:\mathrm{1}>\mathrm{0} \\ $$$$\left[\left[{With}\:{the}\:{help}\:{of}\:{graphing}\:{calculator}\right.\right. \\ $$$$\left.{a}\left.\geqslant\mathrm{2}.\mathrm{293}....\right]\right] \\ $$$${By}\:{using}\:{numeical}\:{methods}.... \\ $$$$ \\ $$

Answered by 123456 last updated on 03/Sep/15

x^(x+1) ≥(x+1)^x   h(x)=x^(x+1) −(x+1)^x   h(x)<0⇔x^(x+1) <(x+1)^x   h(x)=0⇔x^(x+1) =(x+1)^x   h(x)>0⇔x^(x+1) =(x+1)^x   h(0)=h(1)=h(2)=−1  h(3)=17  for x∈[0,+∞) its continuous and since  h(2)<0<h(3) by inthermediare value theorem (rolle theorem)  ∃ξ∈[2,3],h(ξ)=0  comtinue

$${x}^{{x}+\mathrm{1}} \geqslant\left({x}+\mathrm{1}\right)^{{x}} \\ $$$${h}\left({x}\right)={x}^{{x}+\mathrm{1}} −\left({x}+\mathrm{1}\right)^{{x}} \\ $$$${h}\left({x}\right)<\mathrm{0}\Leftrightarrow{x}^{{x}+\mathrm{1}} <\left({x}+\mathrm{1}\right)^{{x}} \\ $$$${h}\left({x}\right)=\mathrm{0}\Leftrightarrow{x}^{{x}+\mathrm{1}} =\left({x}+\mathrm{1}\right)^{{x}} \\ $$$${h}\left({x}\right)>\mathrm{0}\Leftrightarrow{x}^{{x}+\mathrm{1}} =\left({x}+\mathrm{1}\right)^{{x}} \\ $$$${h}\left(\mathrm{0}\right)={h}\left(\mathrm{1}\right)={h}\left(\mathrm{2}\right)=−\mathrm{1} \\ $$$${h}\left(\mathrm{3}\right)=\mathrm{17} \\ $$$$\mathrm{for}\:{x}\in\left[\mathrm{0},+\infty\right)\:\mathrm{its}\:\mathrm{continuous}\:\mathrm{and}\:\mathrm{since} \\ $$$${h}\left(\mathrm{2}\right)<\mathrm{0}<{h}\left(\mathrm{3}\right)\:\mathrm{by}\:\mathrm{inthermediare}\:\mathrm{value}\:\mathrm{theorem}\:\left(\mathrm{rolle}\:\mathrm{theorem}\right) \\ $$$$\exists\xi\in\left[\mathrm{2},\mathrm{3}\right],{h}\left(\xi\right)=\mathrm{0} \\ $$$$\mathrm{comtinue} \\ $$

Commented by 123456 last updated on 03/Sep/15

h(x)=0, bissection method (≈ values)     a        b        x      h(a)     h(b)        h(x)  2,00∣3,00∣2,50∣−1,00∣+17,00∣+1,79  2,00∣2,50∣2,25∣−1,00∣+01,79∣−0,23  2,25∣2,50∣2,38∣−0,23∣+01,79∣+0,59  2,25∣2,38∣2,32∣−0,23∣+00,59∣+0,16  2,25∣2,32∣2,29∣−0,23∣+00,16∣−0,02  x≈2,29,∣h(x)∣≈0,02

$${h}\left({x}\right)=\mathrm{0},\:\mathrm{bissection}\:\mathrm{method}\:\left(\approx\:\mathrm{values}\right) \\ $$$$\:\:\:{a}\:\:\:\:\:\:\:\:{b}\:\:\:\:\:\:\:\:{x}\:\:\:\:\:\:{h}\left({a}\right)\:\:\:\:\:{h}\left({b}\right)\:\:\:\:\:\:\:\:{h}\left({x}\right) \\ $$$$\mathrm{2},\mathrm{00}\mid\mathrm{3},\mathrm{00}\mid\mathrm{2},\mathrm{50}\mid−\mathrm{1},\mathrm{00}\mid+\mathrm{17},\mathrm{00}\mid+\mathrm{1},\mathrm{79} \\ $$$$\mathrm{2},\mathrm{00}\mid\mathrm{2},\mathrm{50}\mid\mathrm{2},\mathrm{25}\mid−\mathrm{1},\mathrm{00}\mid+\mathrm{01},\mathrm{79}\mid−\mathrm{0},\mathrm{23} \\ $$$$\mathrm{2},\mathrm{25}\mid\mathrm{2},\mathrm{50}\mid\mathrm{2},\mathrm{38}\mid−\mathrm{0},\mathrm{23}\mid+\mathrm{01},\mathrm{79}\mid+\mathrm{0},\mathrm{59} \\ $$$$\mathrm{2},\mathrm{25}\mid\mathrm{2},\mathrm{38}\mid\mathrm{2},\mathrm{32}\mid−\mathrm{0},\mathrm{23}\mid+\mathrm{00},\mathrm{59}\mid+\mathrm{0},\mathrm{16} \\ $$$$\mathrm{2},\mathrm{25}\mid\mathrm{2},\mathrm{32}\mid\mathrm{2},\mathrm{29}\mid−\mathrm{0},\mathrm{23}\mid+\mathrm{00},\mathrm{16}\mid−\mathrm{0},\mathrm{02} \\ $$$${x}\approx\mathrm{2},\mathrm{29},\mid{h}\left({x}\right)\mid\approx\mathrm{0},\mathrm{02} \\ $$

Commented by Rasheed Ahmad last updated on 03/Sep/15

Approach is really appreciable!

$$\mathrm{Approach}\:\mathrm{is}\:\mathrm{really}\:\mathrm{appreciable}! \\ $$

Commented by Rasheed Ahmad last updated on 14/Sep/15

h(x)>0⇔x^(x+1)  > (x+1)^x

$${h}\left({x}\right)>\mathrm{0}\Leftrightarrow{x}^{{x}+\mathrm{1}} \:>\:\left({x}+\mathrm{1}\right)^{{x}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com