All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 17167 by Arnab Maiti last updated on 01/Jul/17
∫x2sin−13xdx
Answered by sma3l2996 last updated on 01/Jul/17
I=∫x2sin−1(3x)dxI=13x3sin−1(3x)−∫x31−9x2dx+clet:t=1−9x2⇒dt=−9xdx1−9x2x2dt=−9x3dx1−9x2⇔19(1−t2)dt=−9x31−9x2dxx31−9x2dx=−181(1−t2)dtI=13x3sin−1(3x)+181∫(1−t2)dt+cI=13x3sin−1(3x)+181(t−13t3)+CI=13x3sin−1(3x)+12431−9x2(2+9x2)+C
Commented by Arnab Maiti last updated on 02/Jul/17
Thankyouverymuch.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com