Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 171684 by SANOGO last updated on 19/Jun/22

Answered by mindispower last updated on 19/Jun/22

f(−x)=f(x)⇔etudier f sur R_+   ∀x∈R_+   ∣F(x)∣≤∫_1 ^∞ ((ln(t))/(x^2 +t^2 ))dt≤∫_1 ^∞ ((ln(t))/t^2 )dt  ∫_1 ^∞ ((ln(t))/t^2 )dt<∞ utilsons   ln(t)=o((√t)),t→∞  ((√t)/t^2 )=(1/t^(3/2) )  integrable en +∞⇒∫_1 ^∞ ((ln(t))/t^2 )dt exist  ⇒F(x) est definit sur R  2 evident ln(t)≥0,∀t∈[1,∞]  F(0)=∫_1 ^∞ ((ln(t))/t^2 )dt=[−((ln(t))/t)]_1 ^∞ +∫(1/t^2 )dt  =[−(1/t)]_1 ^∞ =1  3,∀x∈R_+ t→((ln(t))/(x^2 +t^2 )) est continue sur [1,∞[  ∫_0 ^1 ((ln(t))/(x^2 +t^2 ))dt≤∫_0 ^1 ((ln(t))/t^2 )dt=F(0)=1  ⇒∀x∈R ∫_1 ^∞ ((ln(t))/(x^2 +t^2 ))dt est continue

$${f}\left(−{x}\right)={f}\left({x}\right)\Leftrightarrow{etudier}\:{f}\:{sur}\:{R}_{+} \\ $$$$\forall{x}\in{R}_{+} \\ $$$$\mid{F}\left({x}\right)\mid\leqslant\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left({t}\right)}{{x}^{\mathrm{2}} +{t}^{\mathrm{2}} }{dt}\leqslant\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left({t}\right)}{{t}^{\mathrm{2}} }{dt} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left({t}\right)}{{t}^{\mathrm{2}} }{dt}<\infty\:{utilsons}\:\:\:{ln}\left({t}\right)={o}\left(\sqrt{{t}}\right),{t}\rightarrow\infty \\ $$$$\frac{\sqrt{{t}}}{{t}^{\mathrm{2}} }=\frac{\mathrm{1}}{{t}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{integrable}\:{en}\:+\infty\Rightarrow\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left({t}\right)}{{t}^{\mathrm{2}} }{dt}\:{exist} \\ $$$$\Rightarrow{F}\left({x}\right)\:{est}\:{definit}\:{sur}\:\mathbb{R} \\ $$$$\mathrm{2}\:{evident}\:{ln}\left({t}\right)\geqslant\mathrm{0},\forall{t}\in\left[\mathrm{1},\infty\right] \\ $$$${F}\left(\mathrm{0}\right)=\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left({t}\right)}{{t}^{\mathrm{2}} }{dt}=\left[−\frac{{ln}\left({t}\right)}{{t}}\right]_{\mathrm{1}} ^{\infty} +\int\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{dt} \\ $$$$=\left[−\frac{\mathrm{1}}{{t}}\right]_{\mathrm{1}} ^{\infty} =\mathrm{1} \\ $$$$\mathrm{3},\forall{x}\in\mathbb{R}_{+} {t}\rightarrow\frac{{ln}\left({t}\right)}{{x}^{\mathrm{2}} +{t}^{\mathrm{2}} }\:{est}\:{continue}\:{sur}\:\left[\mathrm{1},\infty\left[\right.\right. \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right)}{{x}^{\mathrm{2}} +{t}^{\mathrm{2}} }{dt}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right)}{{t}^{\mathrm{2}} }{dt}={F}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\Rightarrow\forall{x}\in\mathbb{R}\:\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left({t}\right)}{{x}^{\mathrm{2}} +{t}^{\mathrm{2}} }{dt}\:{est}\:{continue} \\ $$

Commented by SANOGO last updated on 20/Jun/22

bien merci

$${bien}\:{merci} \\ $$

Commented by mindispower last updated on 20/Jun/22

avec plaisir

$${avec}\:{plaisir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com