All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 171835 by Mikenice last updated on 21/Jun/22
solveforx:x5+x4+1=0
Answered by floor(10²Eta[1]) last updated on 21/Jun/22
x5+x4+1=(x2+ax+1)(x3+bx2+cx+1)x5+(a+b)x4+(ab+c+1)x3+(1+ac+b)x2+(a+c)x+1a+b=1⇒b=1−aab+c=−1⇒ab−a=−1ac+b=−1⇒−a2+b=−1⇒a2+a−2=0⇒a=−2or1a+c=0⇒a=−conlyworksa=1⇒b=0,c=−1⇒x5+x4+1=(x2+x+1)(x3−x+1)=0x2+x+1=0⇒x=−1±i32x3−x+1=0notethat(a+b)3−3ab(a+b)−(a3+b3)=0letx=a+bx3−3abx−(a3+b3)=0⇒3ab=1⇒a3b3=127=Pa3+b3=−1=S⇒a3,b3aretherootsofz2+z+127=0⇒z=−1±5332=a3andb3⇒x=a+b=−1+53323+−1−53323
Terms of Service
Privacy Policy
Contact: info@tinkutara.com