Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 171835 by Mikenice last updated on 21/Jun/22

solve for x:  x^5 +x^4 +1=0

solveforx:x5+x4+1=0

Answered by floor(10²Eta[1]) last updated on 21/Jun/22

x^5 +x^4 +1=(x^2 +ax+1)(x^3 +bx^2 +cx+1)  x^5 +(a+b)x^4 +(ab+c+1)x^3 +(1+ac+b)x^2 +(a+c)x+1  a+b=1⇒b=1−a  ab+c=−1⇒ab−a=−1  ac+b=−1⇒−a^2 +b=−1⇒a^2 +a−2=0⇒a=−2 or 1  a+c=0⇒a=−c  only works a=1⇒b=0, c=−1  ⇒x^5 +x^4 +1=(x^2 +x+1)(x^3 −x+1)=0  x^2 +x+1=0⇒x=((−1±i(√3))/2)  x^3 −x+1=0  note that (a+b)^3 −3ab(a+b)−(a^3 +b^3 )=0  let x=a+b  x^3 −3abx−(a^3 +b^3 )=0  ⇒3ab=1⇒a^3 b^3 =(1/(27))=P  a^3 +b^3 =−1=S  ⇒a^3 , b^3  are the roots of  z^2 +z+(1/(27))=0⇒z=((−1±(5/(3(√3))))/2)=a^3  and b^3   ⇒x=a+b=(((−1+(5/(3(√3))))/2))^(1/3) +(((−1−(5/(3(√3))))/2))^(1/3)

x5+x4+1=(x2+ax+1)(x3+bx2+cx+1)x5+(a+b)x4+(ab+c+1)x3+(1+ac+b)x2+(a+c)x+1a+b=1b=1aab+c=1aba=1ac+b=1a2+b=1a2+a2=0a=2or1a+c=0a=conlyworksa=1b=0,c=1x5+x4+1=(x2+x+1)(x3x+1)=0x2+x+1=0x=1±i32x3x+1=0notethat(a+b)33ab(a+b)(a3+b3)=0letx=a+bx33abx(a3+b3)=03ab=1a3b3=127=Pa3+b3=1=Sa3,b3aretherootsofz2+z+127=0z=1±5332=a3andb3x=a+b=1+53323+153323

Terms of Service

Privacy Policy

Contact: info@tinkutara.com