Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 17187 by virus last updated on 02/Jul/17

Answered by Tinkutara last updated on 02/Jul/17

((a_1  + a_2  + ... + a_p )/(a_1  + a_2  + ... + a_q )) = (((p/2)[2a_1  + (p − 1)d])/((q/2)[2a_1  + (q − 1)d]))  = ((p[2a_1  + (p − 1)d])/(q[2a_1  + (q − 1)d])) = (p^2 /q^2 ) (Given)  2a_1 q + (p − 1)dq = 2a_1 p + (q − 1)dp  2a_1 (p − q) = d(pq − q − pq + p)  2a_1  = d ⇒ a_1  = (d/2)  Now (a_6 /a_(12) ) = ((a_1  + 5d)/(a_1  + 11d)) = (((11d)/2)/((23d)/2)) = ((11)/(23))

$$\frac{{a}_{\mathrm{1}} \:+\:{a}_{\mathrm{2}} \:+\:...\:+\:{a}_{{p}} }{{a}_{\mathrm{1}} \:+\:{a}_{\mathrm{2}} \:+\:...\:+\:{a}_{{q}} }\:=\:\frac{\frac{{p}}{\mathrm{2}}\left[\mathrm{2}{a}_{\mathrm{1}} \:+\:\left({p}\:−\:\mathrm{1}\right){d}\right]}{\frac{{q}}{\mathrm{2}}\left[\mathrm{2}{a}_{\mathrm{1}} \:+\:\left({q}\:−\:\mathrm{1}\right){d}\right]} \\ $$$$=\:\frac{{p}\left[\mathrm{2}{a}_{\mathrm{1}} \:+\:\left({p}\:−\:\mathrm{1}\right){d}\right]}{{q}\left[\mathrm{2}{a}_{\mathrm{1}} \:+\:\left({q}\:−\:\mathrm{1}\right){d}\right]}\:=\:\frac{{p}^{\mathrm{2}} }{{q}^{\mathrm{2}} }\:\left(\mathrm{Given}\right) \\ $$$$\mathrm{2}{a}_{\mathrm{1}} {q}\:+\:\left({p}\:−\:\mathrm{1}\right){dq}\:=\:\mathrm{2}{a}_{\mathrm{1}} {p}\:+\:\left({q}\:−\:\mathrm{1}\right){dp} \\ $$$$\mathrm{2}{a}_{\mathrm{1}} \left({p}\:−\:{q}\right)\:=\:{d}\left({pq}\:−\:{q}\:−\:{pq}\:+\:{p}\right) \\ $$$$\mathrm{2}{a}_{\mathrm{1}} \:=\:{d}\:\Rightarrow\:{a}_{\mathrm{1}} \:=\:\frac{{d}}{\mathrm{2}} \\ $$$$\mathrm{Now}\:\frac{{a}_{\mathrm{6}} }{{a}_{\mathrm{12}} }\:=\:\frac{{a}_{\mathrm{1}} \:+\:\mathrm{5}{d}}{{a}_{\mathrm{1}} \:+\:\mathrm{11}{d}}\:=\:\frac{\frac{\mathrm{11}{d}}{\mathrm{2}}}{\frac{\mathrm{23}{d}}{\mathrm{2}}}\:=\:\frac{\mathrm{11}}{\mathrm{23}} \\ $$

Answered by RasheedSoomro last updated on 03/Jul/17

AnOther way  ((a_1 +a_2 +...a_p )/(a_1 +a_2 +...a_q ))=(p^2 /q^2 )   ,    (a_6 /a_(12) )=?  [We require ((a_1 +5d)/(a_1 +11d))]     (((p/2)[2a_1 +(p−1)d])/((q/2)[2a_1 +(q−1)d]))=(p^2 /q^2 )  ((a_1 +(((p−1)/2))d)/(a_1 +(((q−1)/2))d))=(p/q)  Now let ((p−1)/2)=5⇒p=11            and ((q−1)/2)=11⇒q=23  So  (a_6 /a_(12) )=((a_1 +5d)/(a_1 +11d))=((11)/(23))

$$\mathrm{AnOther}\:\mathrm{way} \\ $$$$\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +...{a}_{{p}} }{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +...{a}_{{q}} }=\frac{{p}^{\mathrm{2}} }{{q}^{\mathrm{2}} }\:\:\:,\:\:\:\:\frac{{a}_{\mathrm{6}} }{{a}_{\mathrm{12}} }=? \\ $$$$\left[{W}\mathrm{e}\:\mathrm{require}\:\frac{{a}_{\mathrm{1}} +\mathrm{5}{d}}{{a}_{\mathrm{1}} +\mathrm{11}{d}}\right] \\ $$$$\:\:\:\frac{\frac{{p}}{\mathrm{2}}\left[\mathrm{2}{a}_{\mathrm{1}} +\left({p}−\mathrm{1}\right){d}\right]}{\frac{{q}}{\mathrm{2}}\left[\mathrm{2}{a}_{\mathrm{1}} +\left({q}−\mathrm{1}\right){d}\right]}=\frac{{p}^{\mathrm{2}} }{{q}^{\mathrm{2}} } \\ $$$$\frac{{a}_{\mathrm{1}} +\left(\frac{{p}−\mathrm{1}}{\mathrm{2}}\right){d}}{{a}_{\mathrm{1}} +\left(\frac{{q}−\mathrm{1}}{\mathrm{2}}\right){d}}=\frac{{p}}{{q}} \\ $$$$\mathrm{Now}\:\mathrm{let}\:\frac{{p}−\mathrm{1}}{\mathrm{2}}=\mathrm{5}\Rightarrow{p}=\mathrm{11} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{and}\:\frac{{q}−\mathrm{1}}{\mathrm{2}}=\mathrm{11}\Rightarrow{q}=\mathrm{23} \\ $$$${S}\mathrm{o} \\ $$$$\frac{{a}_{\mathrm{6}} }{{a}_{\mathrm{12}} }=\frac{{a}_{\mathrm{1}} +\mathrm{5}{d}}{{a}_{\mathrm{1}} +\mathrm{11}{d}}=\frac{\mathrm{11}}{\mathrm{23}} \\ $$

Answered by myintkhaing last updated on 03/Jul/17

another way  Let a_1 +a_2 +a_3 +...+a_p =S_p =kp^2  and  a_1 +a_2 +a_3 +...+a_q =S_q =kq^2   So, S_n = kn^2   Thus  a_6 = S_6 −S_5 =11k and a_(12) =S_(12) −S_(11) =23k  ∴ (a_6 /a_(12) ) = ((11)/(23))

$$\mathrm{another}\:\mathrm{way} \\ $$$$\mathrm{Let}\:\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{2}} +\mathrm{a}_{\mathrm{3}} +...+\mathrm{a}_{\mathrm{p}} =\mathrm{S}_{\mathrm{p}} =\mathrm{kp}^{\mathrm{2}} \:\mathrm{and} \\ $$$$\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{2}} +\mathrm{a}_{\mathrm{3}} +...+\mathrm{a}_{\mathrm{q}} =\mathrm{S}_{\mathrm{q}} =\mathrm{kq}^{\mathrm{2}} \\ $$$$\mathrm{So},\:\mathrm{S}_{\mathrm{n}} =\:\mathrm{kn}^{\mathrm{2}} \\ $$$$\mathrm{Thus} \\ $$$$\mathrm{a}_{\mathrm{6}} =\:\mathrm{S}_{\mathrm{6}} −\mathrm{S}_{\mathrm{5}} =\mathrm{11k}\:\mathrm{and}\:\mathrm{a}_{\mathrm{12}} =\mathrm{S}_{\mathrm{12}} −\mathrm{S}_{\mathrm{11}} =\mathrm{23k} \\ $$$$\therefore\:\frac{\mathrm{a}_{\mathrm{6}} }{\mathrm{a}_{\mathrm{12}} }\:=\:\frac{\mathrm{11}}{\mathrm{23}} \\ $$

Commented by virus last updated on 15/Jul/17

yes thank you

$${yes}\:{thank}\:{you} \\ $$

Commented by RasheedSoomro last updated on 03/Jul/17

More efficient way than that of mine!

$$\mathrm{More}\:\mathrm{efficient}\:\mathrm{way}\:\mathrm{than}\:\mathrm{that}\:\mathrm{of}\:\mathrm{mine}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com