Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 171908 by ajfour last updated on 21/Jun/22

Commented by ajfour last updated on 21/Jun/22

Man has to water the tree  once with volume V_0  . His  bucket leaks at a rate (dV/dt)=−kV.  his speed=u(2−(m/(m+ρV)))  ρV<m . Find x such that the  he can reach with V_0  volume  of water in bucket in min.   time.  (m is mass of bucket)

$${Man}\:{has}\:{to}\:{water}\:{the}\:{tree} \\ $$$${once}\:{with}\:{volume}\:{V}_{\mathrm{0}} \:.\:{His} \\ $$$${bucket}\:{leaks}\:{at}\:{a}\:{rate}\:\frac{{dV}}{{dt}}=−{kV}. \\ $$$${his}\:{speed}={u}\left(\mathrm{2}−\frac{{m}}{{m}+\rho{V}}\right) \\ $$$$\rho{V}<{m}\:.\:{Find}\:{x}\:{such}\:{that}\:{the} \\ $$$${he}\:{can}\:{reach}\:{with}\:{V}_{\mathrm{0}} \:{volume} \\ $$$${of}\:{water}\:{in}\:{bucket}\:{in}\:{min}.\: \\ $$$${time}.\:\:\left({m}\:{is}\:{mass}\:{of}\:{bucket}\right) \\ $$

Commented by mr W last updated on 22/Jun/22

s_1 =(√(a^2 +x^2 ))  v_1 =u  t_1 =(s_1 /u)=((√(a^2 +x^2 ))/u)  say the volume of water in the bucket  at the river is V_1 .  s_2 =(√(b^2 +(c−x)^2 ))  (dV/dt)=−kV  ∫_V_1  ^V (dV/V)=−k∫_0 ^t dt  ln (V/V_1 )=−kt  V=V_1 e^(−kt)   V_0 =V_1 e^(−kt_2 )   (ds/dt)=v=u(2−(m/(m+ρV)))  (ds/dt)=u(2−(m/(m+ρV_1 e^(−kt) )))  ∫_0 ^s_2  ds=u∫_0 ^t_2  (2−(1/(1+((ρV_1 )/m)e^(−kt) )))dt  s_2 =u[t−((ln (1+((ρV_1 )/m)e^(−kt) ))/k)]_0 ^t_2    (√(b^2 +(c−x)^2 ))=u(t_2 −(1/k)ln ((m+ρV_1 e^(−kt_2 ) )/(m+ρV_1 )))  (√(b^2 +(c−x)^2 ))=u(t_2 −(1/k)ln ((m+ρV_0 )/(m+ρV_0 e^(kt_2 ) )))  total time T=t_1 +t_2   t_2 =T−t_1 =T−((√(a^2 +x^2 ))/u)  (√(b^2 +(c−x)^2 ))=u[T−((√(a^2 +x^2 ))/u)−(1/k)ln ((m+ρV_0 )/(m+ρV_0 e^(k(T−((√(a^2 +x^2 ))/u))) ))]  (((√(a^2 +x^2 ))+(√(b^2 +(c−x)^2 )))/u)=T−(1/k)ln ((m/(ρV_0 ))/((m/(ρV_0 ))+e^(k(T−((√(a^2 +x^2 ))/u))) ))  (((√(a^2 +x^2 ))+(√(b^2 +(c−x)^2 )))/(u/k))=kT−ln ((m/(ρV_0 ))/((m/(ρV_0 ))+e^((kT−((√(a^2 +x^2 ))/(u/k)))) ))  let λ=((ρV_0 )/m), Φ=kT, μ=(u/k)  (((√(a^2 +x^2 ))+(√(b^2 +(c−x)^2 )))/μ)=Φ+ln(1+λe^(Φ−((√(a^2 +x^2 ))/μ)) )   (dΦ/dx)=0 for minimum T.  see example.

$${s}_{\mathrm{1}} =\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} } \\ $$$${v}_{\mathrm{1}} ={u} \\ $$$${t}_{\mathrm{1}} =\frac{{s}_{\mathrm{1}} }{{u}}=\frac{\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }}{{u}} \\ $$$${say}\:{the}\:{volume}\:{of}\:{water}\:{in}\:{the}\:{bucket} \\ $$$${at}\:{the}\:{river}\:{is}\:{V}_{\mathrm{1}} . \\ $$$${s}_{\mathrm{2}} =\sqrt{{b}^{\mathrm{2}} +\left({c}−{x}\right)^{\mathrm{2}} } \\ $$$$\frac{{dV}}{{dt}}=−{kV} \\ $$$$\int_{{V}_{\mathrm{1}} } ^{{V}} \frac{{dV}}{{V}}=−{k}\int_{\mathrm{0}} ^{{t}} {dt} \\ $$$$\mathrm{ln}\:\frac{{V}}{{V}_{\mathrm{1}} }=−{kt} \\ $$$${V}={V}_{\mathrm{1}} {e}^{−{kt}} \\ $$$${V}_{\mathrm{0}} ={V}_{\mathrm{1}} {e}^{−{kt}_{\mathrm{2}} } \\ $$$$\frac{{ds}}{{dt}}={v}={u}\left(\mathrm{2}−\frac{{m}}{{m}+\rho{V}}\right) \\ $$$$\frac{{ds}}{{dt}}={u}\left(\mathrm{2}−\frac{{m}}{{m}+\rho{V}_{\mathrm{1}} {e}^{−{kt}} }\right) \\ $$$$\int_{\mathrm{0}} ^{{s}_{\mathrm{2}} } {ds}={u}\int_{\mathrm{0}} ^{{t}_{\mathrm{2}} } \left(\mathrm{2}−\frac{\mathrm{1}}{\mathrm{1}+\frac{\rho{V}_{\mathrm{1}} }{{m}}{e}^{−{kt}} }\right){dt} \\ $$$${s}_{\mathrm{2}} ={u}\left[{t}−\frac{\mathrm{ln}\:\left(\mathrm{1}+\frac{\rho{V}_{\mathrm{1}} }{{m}}{e}^{−{kt}} \right)}{{k}}\right]_{\mathrm{0}} ^{{t}_{\mathrm{2}} } \\ $$$$\sqrt{{b}^{\mathrm{2}} +\left({c}−{x}\right)^{\mathrm{2}} }={u}\left({t}_{\mathrm{2}} −\frac{\mathrm{1}}{{k}}\mathrm{ln}\:\frac{{m}+\rho{V}_{\mathrm{1}} {e}^{−{kt}_{\mathrm{2}} } }{{m}+\rho{V}_{\mathrm{1}} }\right) \\ $$$$\sqrt{{b}^{\mathrm{2}} +\left({c}−{x}\right)^{\mathrm{2}} }={u}\left({t}_{\mathrm{2}} −\frac{\mathrm{1}}{{k}}\mathrm{ln}\:\frac{{m}+\rho{V}_{\mathrm{0}} }{{m}+\rho{V}_{\mathrm{0}} {e}^{{kt}_{\mathrm{2}} } }\right) \\ $$$${total}\:{time}\:{T}={t}_{\mathrm{1}} +{t}_{\mathrm{2}} \\ $$$${t}_{\mathrm{2}} ={T}−{t}_{\mathrm{1}} ={T}−\frac{\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }}{{u}} \\ $$$$\sqrt{{b}^{\mathrm{2}} +\left({c}−{x}\right)^{\mathrm{2}} }={u}\left[{T}−\frac{\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }}{{u}}−\frac{\mathrm{1}}{{k}}\mathrm{ln}\:\frac{{m}+\rho{V}_{\mathrm{0}} }{{m}+\rho{V}_{\mathrm{0}} {e}^{{k}\left({T}−\frac{\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }}{{u}}\right)} }\right] \\ $$$$\frac{\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} +\left({c}−{x}\right)^{\mathrm{2}} }}{{u}}={T}−\frac{\mathrm{1}}{{k}}\mathrm{ln}\:\frac{\frac{{m}}{\rho{V}_{\mathrm{0}} }}{\frac{{m}}{\rho{V}_{\mathrm{0}} }+{e}^{{k}\left({T}−\frac{\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }}{{u}}\right)} } \\ $$$$\frac{\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} +\left({c}−{x}\right)^{\mathrm{2}} }}{\frac{{u}}{{k}}}={kT}−\mathrm{ln}\:\frac{\frac{{m}}{\rho{V}_{\mathrm{0}} }}{\frac{{m}}{\rho{V}_{\mathrm{0}} }+{e}^{\left({kT}−\frac{\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }}{\frac{{u}}{{k}}}\right)} } \\ $$$${let}\:\lambda=\frac{\rho{V}_{\mathrm{0}} }{{m}},\:\Phi={kT},\:\mu=\frac{{u}}{{k}} \\ $$$$\frac{\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} +\left({c}−{x}\right)^{\mathrm{2}} }}{\mu}=\Phi+\mathrm{ln}\left(\mathrm{1}+\lambda{e}^{\Phi−\frac{\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }}{\mu}} \right)\: \\ $$$$\frac{{d}\Phi}{{dx}}=\mathrm{0}\:{for}\:{minimum}\:{T}. \\ $$$${see}\:{example}. \\ $$

Commented by ajfour last updated on 22/Jun/22

Thank you very much sir...

$${Thank}\:{you}\:{very}\:{much}\:{sir}... \\ $$

Commented by mr W last updated on 22/Jun/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com