All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 171971 by ilhamQ last updated on 22/Jun/22
∫xx2+4x+3dx=...
Answered by cortano1 last updated on 22/Jun/22
x(x+1)(x+3)=ax+1+bx+3a=−1−1+3=−12b=−3−3+1=32∫xx2+4x+3dx=−12ln∣x+1∣+32ln∣x+3∣+c
Answered by Mathspace last updated on 22/Jun/22
I=12∫2x+4−4x2+4x+3dx=12∫2x+4x2+4x+3dx−2∫dxx2+4x+3x2+4x+3=0→Δ′=22−3=1⇒x1=−2+11=−1andx2=−2−11=−3⇒1x2+4x+3=1(x+1)(x+3)=12(1x+1−1x+3)⇒∫dxx2+4x+3=12ln∣x+1x+3∣+c1∫2x+4x2+4x+3dx=ln∣x2+4x+3∣+c2⇒I=12ln∣x2+4x+3∣−ln∣x+1x+3∣+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com