Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 172024 by Mikenice last updated on 23/Jun/22

let α and β be the root of the equation  ax^2 +bx+c=0. find the equation whose roots  are ((1/α)+(1/β)) and ((1/α)−(1/β))

$${let}\:\alpha\:{and}\:\beta\:{be}\:{the}\:{root}\:{of}\:{the}\:{equation} \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}.\:{find}\:{the}\:{equation}\:{whose}\:{roots} \\ $$$${are}\:\left(\frac{\mathrm{1}}{\alpha}+\frac{\mathrm{1}}{\beta}\right)\:{and}\:\left(\frac{\mathrm{1}}{\alpha}−\frac{\mathrm{1}}{\beta}\right) \\ $$

Answered by Rasheed.Sindhi last updated on 23/Jun/22

Given equation:  ax^2 +bx+c=0  α+β=−(b/a) , αβ=(c/a),α−β=((√(b^2 −4ac))/a)  Required equation:  Sum of the roots=((1/α)+(1/β))+((1/α)−(1/β))         =((α+β)/(αβ))+((−(α−β))/(αβ))  =(((−b/a)−((√(b^2 −4ac)) )/a)/((c/a)))=((−b−(√(b^2 −4ac)) )/c)  Product of roots=((1/α)+(1/β))((1/α)−(1/β))      = (1/α^2 )−(1/β^2 )=((−(α+β)(α−β))/((αβ)^2 ))      =((−(−b/a)(−b−(√(b^2 −4ac)) /c))/((c/a)^2 ))     =−((ab)/c^3 )(b+(√(b^2 −4ac)) )   x^2 −(Sum of the roots)x+(product of the roots)=0  x^2 −(((−b−(√(b^2 −4ac)) )/c))x−((ab)/c^3 )(b+(√(b^2 −4ac)) )=0  c^3 x^2 +c^2 (b+(√(b^2 −4ac)) )x−ab(b+(√(b^2 −4ac)) )=0

$${Given}\:{equation}: \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$$\alpha+\beta=−\frac{{b}}{{a}}\:,\:\alpha\beta=\frac{{c}}{{a}},\alpha−\beta=\frac{\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{{a}} \\ $$$${Required}\:{equation}: \\ $$$${Sum}\:{of}\:{the}\:{roots}=\left(\frac{\mathrm{1}}{\alpha}+\frac{\mathrm{1}}{\beta}\right)+\left(\frac{\mathrm{1}}{\alpha}−\frac{\mathrm{1}}{\beta}\right) \\ $$$$\:\:\:\:\:\:\:=\frac{\alpha+\beta}{\alpha\beta}+\frac{−\left(\alpha−\beta\right)}{\alpha\beta} \\ $$$$=\frac{\left(−{b}/{a}\right)−\left(\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\:\right)/{a}}{\left({c}/{a}\right)}=\frac{−{b}−\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\:}{{c}} \\ $$$${Product}\:{of}\:{roots}=\left(\frac{\mathrm{1}}{\alpha}+\frac{\mathrm{1}}{\beta}\right)\left(\frac{\mathrm{1}}{\alpha}−\frac{\mathrm{1}}{\beta}\right) \\ $$$$\:\:\:\:=\:\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }−\frac{\mathrm{1}}{\beta^{\mathrm{2}} }=\frac{−\left(\alpha+\beta\right)\left(\alpha−\beta\right)}{\left(\alpha\beta\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:=\frac{−\left(−{b}/{a}\right)\left(−{b}−\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\:/{c}\right)}{\left({c}/{a}\right)^{\mathrm{2}} } \\ $$$$\:\:\:=−\frac{{ab}}{{c}^{\mathrm{3}} }\left({b}+\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\:\right) \\ $$$$\:{x}^{\mathrm{2}} −\left({Sum}\:{of}\:{the}\:{roots}\right){x}+\left({product}\:{of}\:{the}\:{roots}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\left(\frac{−{b}−\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\:}{{c}}\right){x}−\frac{{ab}}{{c}^{\mathrm{3}} }\left({b}+\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\:\right)=\mathrm{0} \\ $$$${c}^{\mathrm{3}} {x}^{\mathrm{2}} +{c}^{\mathrm{2}} \left({b}+\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\:\right){x}−{ab}\left({b}+\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\:\right)=\mathrm{0} \\ $$

Commented by Mikenice last updated on 23/Jun/22

thanks sir

$${thanks}\:{sir} \\ $$

Commented by peter frank last updated on 23/Jun/22

thanks

$$\mathrm{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com