All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 172024 by Mikenice last updated on 23/Jun/22
letαandβbetherootoftheequationax2+bx+c=0.findtheequationwhoserootsare(1α+1β)and(1α−1β)
Answered by Rasheed.Sindhi last updated on 23/Jun/22
Givenequation:ax2+bx+c=0α+β=−ba,αβ=ca,α−β=b2−4acaRequiredequation:Sumoftheroots=(1α+1β)+(1α−1β)=α+βαβ+−(α−β)αβ=(−b/a)−(b2−4ac)/a(c/a)=−b−b2−4accProductofroots=(1α+1β)(1α−1β)=1α2−1β2=−(α+β)(α−β)(αβ)2=−(−b/a)(−b−b2−4ac/c)(c/a)2=−abc3(b+b2−4ac)x2−(Sumoftheroots)x+(productoftheroots)=0x2−(−b−b2−4acc)x−abc3(b+b2−4ac)=0c3x2+c2(b+b2−4ac)x−ab(b+b2−4ac)=0
Commented by Mikenice last updated on 23/Jun/22
thankssir
Commented by peter frank last updated on 23/Jun/22
thanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com