All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 17206 by Arnab Maiti last updated on 02/Jul/17
Whatwillbethevalluof∫−aax2ydx?Wherex2+y2=a2andy⩾0
Answered by mrW1 last updated on 02/Jul/17
letx=acosθandy=asinθdx=−asinθdθx∈[−a,a]andy⩾0≡θ∈[π,0]∫−aax2ydx=∫π0a2cos2θasinθ(−asinθ)dθ=−a4∫π0cos2θsin2θdθ=a4∫0πcos2θsin2θdθ=a44∫0π(2cosθsinθ)2dθ=a44∫0πsin22θdθ=a48∫0π[1−cos4θ]dθ=a48[θ−14sin4θ]0π=a48×π=πa48
Commented by Arnab Maiti last updated on 02/Jul/17
E×cillent!!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com