Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 172124 by Mikenice last updated on 23/Jun/22

if tanθ+secθ=x, show that   sinθ=((x^2 −1)/(x^2 +1))

iftanθ+secθ=x,showthatsinθ=x21x2+1

Commented by infinityaction last updated on 23/Jun/22

       (((1+sinθ)^2 )/(cos^2 θ ))  =  x^2          ((1+sin^2 θ+2sinθ  )/(cos^2 θ )) =  x^2           ((1+sin^2 θ+2sinθ−cos^2 θ   )/(1+sin^2 θ+2sinθ+cos^2 θ   ))  =  ((x^2 −1)/(x^2 +1))          ((2sinθ(1+sinθ)  )/(2 (1+sinθ) ))  =  ((x^2 −1)/(x^2 +1))         sinθ   =  ((x^2 −1)/(x^2 +1))

(1+sinθ)2cos2θ=x21+sin2θ+2sinθcos2θ=x21+sin2θ+2sinθcos2θ1+sin2θ+2sinθ+cos2θ=x21x2+12sinθ(1+sinθ)2(1+sinθ)=x21x2+1sinθ=x21x2+1

Commented by BaliramSingh last updated on 24/Jun/22

Nice Solution

NiceSolution

Answered by BaliramSingh last updated on 23/Jun/22

  secθ+tanθ=x                     ..... .....[1]  (((secθ+tanθ)(secθ−tanθ))/((secθ−tanθ))) = x  ((sec^2 θ−tan^2 θ)/((secθ−tanθ))) = x  (1/((secθ−tanθ)))=x            secθ−tanθ = (1/x)                ...........[2]     by    [1]+[2]  2secθ=x+(1/x)                       ............[3]     by    [1]−[2]  2tanθ=x−(1/x)                    .............[4]  by     [4]÷[3]   ((2tanθ)/(2secθ)) = ((x−(1/x))/(x+(1/x)))  (((sinθ)/(cosθ))/(1/(cosθ))) = (((x^2 −1)/x)/((x^2 +1)/x))  sinθ = ((x^2 −1)/(x^2 +1))

secθ+tanθ=x..........[1](secθ+tanθ)(secθtanθ)(secθtanθ)=xsec2θtan2θ(secθtanθ)=x1(secθtanθ)=xsecθtanθ=1x...........[2]by[1]+[2]2secθ=x+1x............[3]by[1][2]2tanθ=x1x.............[4]by[4]÷[3]2tanθ2secθ=x1xx+1xsinθcosθ1cosθ=x21xx2+1xsinθ=x21x2+1

Commented by peter frank last updated on 23/Jun/22

thank you

thankyou

Answered by Plato last updated on 23/Jun/22

soln  sin θ=((x^2 −1)/(x^2 +1))  ((x^2 −1)/(x^2 +1))  (((tan θ+sec θ)^2 −1)/((tan θ+sec θ)^2 +1))  ((tan^2 θ+sec^2 θ+2tan θsec θ−1)/(tan^2 θ+sec^2 θ+2tan θsec θ+1))  but 1+tan^2 θ=sec^2 θ  ((2tan θsec θ+2tan^2 θ)/(2tan θsec θ+2tan^2 θ+2))  factoring 2    ((tanθ secθ+tan^2 θ )/(tan θsec θ+sec^2 θ))  divide by secθ  ((tanθ+tan^2 θcos θ)/(tanθ+(1/(cos θ))))  ((((sinθ)/(cosθ))+((sin^2 θ)/(cosθ)))/( ((sinθ )/(cosθ ))+(1/(cosθ))))  (((sinθ(1+sinθ))/(cosθ))/((1+sinθ)/(cosθ)))  ((sinθ(1+sinθ))/((1+sinθ)))  =sin θ

solnsinθ=x21x2+1x21x2+1(tanθ+secθ)21(tanθ+secθ)2+1tan2θ+sec2θ+2tanθsecθ1tan2θ+sec2θ+2tanθsecθ+1but1+tan2θ=sec2θ2tanθsecθ+2tan2θ2tanθsecθ+2tan2θ+2factoring2tanθsecθ+tan2θtanθsecθ+sec2θdividebysecθtanθ+tan2θcosθtanθ+1cosθsinθcosθ+sin2θcosθsinθcosθ+1cosθsinθ(1+sinθ)cosθ1+sinθcosθsinθ(1+sinθ)(1+sinθ)=sinθ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com