Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 172210 by Rasheed.Sindhi last updated on 24/Jun/22

Solve in N:  6^x +6^y =222

$$\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{in}}\:\mathbb{N}: \\ $$$$\mathrm{6}^{\boldsymbol{\mathrm{x}}} +\mathrm{6}^{\boldsymbol{\mathrm{y}}} =\mathrm{222} \\ $$

Commented by infinityaction last updated on 24/Jun/22

(1,3) and (3,1)

$$\left(\mathrm{1},\mathrm{3}\right)\:{and}\:\left(\mathrm{3},\mathrm{1}\right) \\ $$

Commented by Rasheed.Sindhi last updated on 24/Jun/22

Correct sir! Process please!

$$\mathrm{Correct}\:\mathrm{sir}!\:\mathrm{Process}\:\mathrm{please}! \\ $$

Commented by infinityaction last updated on 22/Jul/22

x,y∈N   6^x +6^(y )  = 222  6^4  = 1296 ⪈ 222  so x and y ⪇ 4    and x and y ⪈0          0⪇x,y⪇4  so x and y should be 1,2,3   so  combitions of numbers   (x,y) = {(1,3) (3,1)}

$${x},{y}\in\mathbb{N} \\ $$$$\:\mathrm{6}^{{x}} +\mathrm{6}^{{y}\:} \:=\:\mathrm{222} \\ $$$$\mathrm{6}^{\mathrm{4}} \:=\:\mathrm{1296}\:\gneq\:\mathrm{222} \\ $$$${so}\:{x}\:{and}\:{y}\:\lneq\:\mathrm{4} \\ $$$$\:\:{and}\:{x}\:{and}\:{y}\:\gneq\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{0}\lneq{x},{y}\lneq\mathrm{4} \\ $$$${so}\:{x}\:{and}\:{y}\:{should}\:{be}\:\mathrm{1},\mathrm{2},\mathrm{3} \\ $$$$\:{so}\:\:{combitions}\:{of}\:{numbers} \\ $$$$\:\left({x},{y}\right)\:=\:\left\{\left(\mathrm{1},\mathrm{3}\right)\:\left(\mathrm{3},\mathrm{1}\right)\right\} \\ $$

Commented by Rasheed.Sindhi last updated on 24/Jun/22

ThanX sir!

$$\mathcal{T}{han}\mathcal{X}\:{sir}! \\ $$

Answered by Rasheed.Sindhi last updated on 24/Jun/22

AnOther Way  6^x +6^y =222  ⇒6^(x−1) +6^(y−1) =37  37 is sum of two powers of 6 and  one is certainly odd(6^0  is only odd)  ∴ 7=36+1 ∣ 7=1+36  ▶6^(x−1) +6^(y−1) =36+1=6^2 +6^0        x−1=2 ∧ y−1=0       x=3 ∧ y=1  ▶ 6^(x−1) +6^(y−1) =1+36=6^0 +6^2        x−1=0 ∧ y−1=2       x=1 ∧ y=3  (x,y)=(1,3),(3,1)

$${AnOther}\:{Way} \\ $$$$\mathrm{6}^{{x}} +\mathrm{6}^{{y}} =\mathrm{222} \\ $$$$\Rightarrow\mathrm{6}^{{x}−\mathrm{1}} +\mathrm{6}^{{y}−\mathrm{1}} =\mathrm{37} \\ $$$$\mathrm{37}\:{is}\:{sum}\:{of}\:{two}\:{powers}\:{of}\:\mathrm{6}\:{and} \\ $$$${one}\:{is}\:{certainly}\:{odd}\left(\mathrm{6}^{\mathrm{0}} \:{is}\:{only}\:{odd}\right) \\ $$$$\therefore\:\mathrm{7}=\mathrm{36}+\mathrm{1}\:\mid\:\mathrm{7}=\mathrm{1}+\mathrm{36} \\ $$$$\blacktriangleright\mathrm{6}^{{x}−\mathrm{1}} +\mathrm{6}^{{y}−\mathrm{1}} =\mathrm{36}+\mathrm{1}=\mathrm{6}^{\mathrm{2}} +\mathrm{6}^{\mathrm{0}} \\ $$$$\:\:\:\:\:{x}−\mathrm{1}=\mathrm{2}\:\wedge\:{y}−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:{x}=\mathrm{3}\:\wedge\:{y}=\mathrm{1} \\ $$$$\blacktriangleright\:\mathrm{6}^{{x}−\mathrm{1}} +\mathrm{6}^{{y}−\mathrm{1}} =\mathrm{1}+\mathrm{36}=\mathrm{6}^{\mathrm{0}} +\mathrm{6}^{\mathrm{2}} \\ $$$$\:\:\:\:\:{x}−\mathrm{1}=\mathrm{0}\:\wedge\:{y}−\mathrm{1}=\mathrm{2} \\ $$$$\:\:\:\:\:{x}=\mathrm{1}\:\wedge\:{y}=\mathrm{3} \\ $$$$\left({x},{y}\right)=\left(\mathrm{1},\mathrm{3}\right),\left(\mathrm{3},\mathrm{1}\right) \\ $$

Commented by infinityaction last updated on 24/Jun/22

nice sir

$${nice}\:{sir} \\ $$

Commented by Rasheed.Sindhi last updated on 24/Jun/22

🙏🙏🙏

🙏🙏🙏

Answered by kapoorshah last updated on 24/Jun/22

6^(x − y) .6^y  + 6^y  = 222  6^y  (6^(x − y)  + 1) = 222  6^y  (6^(x − y)  + 1) = 6 . 37    6^y  = 6^1  ⇒ y = 1  6^(x − 1)  +1 = 37  6^(x − 1)  = 6^2  ⇒ x = 3    so the solutions : x = 3, y = 1 and                                         x = 1, y = 3

$$\mathrm{6}^{{x}\:−\:{y}} .\mathrm{6}^{{y}} \:+\:\mathrm{6}^{{y}} \:=\:\mathrm{222} \\ $$$$\mathrm{6}^{{y}} \:\left(\mathrm{6}^{{x}\:−\:{y}} \:+\:\mathrm{1}\right)\:=\:\mathrm{222} \\ $$$$\mathrm{6}^{{y}} \:\left(\mathrm{6}^{{x}\:−\:{y}} \:+\:\mathrm{1}\right)\:=\:\mathrm{6}\:.\:\mathrm{37} \\ $$$$ \\ $$$$\mathrm{6}^{{y}} \:=\:\mathrm{6}^{\mathrm{1}} \:\Rightarrow\:{y}\:=\:\mathrm{1} \\ $$$$\mathrm{6}^{{x}\:−\:\mathrm{1}} \:+\mathrm{1}\:=\:\mathrm{37} \\ $$$$\mathrm{6}^{{x}\:−\:\mathrm{1}} \:=\:\mathrm{6}^{\mathrm{2}} \:\Rightarrow\:{x}\:=\:\mathrm{3} \\ $$$$ \\ $$$${so}\:{the}\:{solutions}\::\:{x}\:=\:\mathrm{3},\:{y}\:=\:\mathrm{1}\:{and}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\:=\:\mathrm{1},\:{y}\:=\:\mathrm{3} \\ $$

Commented by Rasheed.Sindhi last updated on 24/Jun/22

Thanks sir!

$$\mathbb{T}\boldsymbol{\mathrm{han}}\Bbbk\boldsymbol{\mathrm{s}}\:\mathrm{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com