Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 172234 by Sotoberry last updated on 24/Jun/22

Commented by cortano1 last updated on 24/Jun/22

 S = ∫_0 ^( 2π) (√(((dx/dθ))^2 +((dy/dθ))^2 )) dθ    { (((dx/dθ) = −3acos^2 θ sin θ )),(((dy/dθ)= 2asin θ cos θ)) :}   S=∫_0 ^(2π)  (√(9a^2 sin^2 θ cos^4 θ+4a^2 sin^2 θ cos^2 θ)) dθ   = ∫_0 ^(2π) ∣a∣sin θ cos θ (√(9 cos^2 θ+4)) dθ  = −((4∣a∣)/(18)) ∫_0 ^(π/2) (√(9cos^2 θ+4)) d(9cos^2 θ+4)  =−((2∣a∣)/9).(2/3) [ 9cos^2 θ+4 ]_0 ^(π/2)   =−((4∣a∣)/(27)) [ 4−13 ] = ((4∣a∣)/3)

$$\:{S}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \sqrt{\left(\frac{{dx}}{{d}\theta}\right)^{\mathrm{2}} +\left(\frac{{dy}}{{d}\theta}\right)^{\mathrm{2}} }\:{d}\theta \\ $$$$\:\begin{cases}{\frac{{dx}}{{d}\theta}\:=\:−\mathrm{3}{a}\mathrm{cos}\:^{\mathrm{2}} \theta\:\mathrm{sin}\:\theta\:}\\{\frac{{dy}}{{d}\theta}=\:\mathrm{2}{a}\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}\end{cases} \\ $$$$\:{S}=\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\:\sqrt{\mathrm{9}{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta\:\mathrm{cos}\:^{\mathrm{4}} \theta+\mathrm{4}{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta\:\mathrm{cos}\:^{\mathrm{2}} \theta}\:{d}\theta \\ $$$$\:=\:\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\mid{a}\mid\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\:\sqrt{\mathrm{9}\:\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{4}}\:{d}\theta \\ $$$$=\:−\frac{\mathrm{4}\mid{a}\mid}{\mathrm{18}}\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\sqrt{\mathrm{9cos}\:^{\mathrm{2}} \theta+\mathrm{4}}\:{d}\left(\mathrm{9cos}\:^{\mathrm{2}} \theta+\mathrm{4}\right) \\ $$$$=−\frac{\mathrm{2}\mid{a}\mid}{\mathrm{9}}.\frac{\mathrm{2}}{\mathrm{3}}\:\left[\:\mathrm{9cos}\:^{\mathrm{2}} \theta+\mathrm{4}\:\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=−\frac{\mathrm{4}\mid{a}\mid}{\mathrm{27}}\:\left[\:\mathrm{4}−\mathrm{13}\:\right]\:=\:\frac{\mathrm{4}\mid{a}\mid}{\mathrm{3}}\: \\ $$

Answered by mr W last updated on 24/Jun/22

(dx/dθ)=−3a cos^2  θ sin θ  (dy/dθ)=2a sin θ cos θ  ds=(√((dx)^2 +(dy)^2 ))  =(√(a^2 sin^2  θ cos^2  θ (9 cos^2  θ+4))) dθ  =(a/(2(√2))) ∣sin 2θ∣(√(9 cos 2θ+17)) dθ    the curve from θ=π to 2π is the  same as from θ=0 to π, therefore  i just calculate the length from  θ=0 to π.  s=∫_0 ^π ds  =2∫_0 ^(π/2) ds  =((2a)/(2(√2)))∫_0 ^(π/2) sin 2θ (√(9 cos 2θ+17)) dθ  =(a/( 18(√2)))∫_(π/2) ^0 (√(9 cos 2θ+17)) d(9 cos 2θ+17)  =(a/( 18(√2)))×(2/3)[(9 cos 2θ+17)^(3/2) ]_(π/2) ^0   =(a/( 27(√2)))[(9+17)^(3/2) −(−9+17)^(3/2) ]  =(a/( 27(√2)))×(26^(3/2) −8^(3/2) )  =(a/( 27(√2)))×(26(√(26))−16(√2))  =((2(13(√(13))−8)a)/( 27))  ≈2.879 a

$$\frac{{dx}}{{d}\theta}=−\mathrm{3}{a}\:\mathrm{cos}^{\mathrm{2}} \:\theta\:\mathrm{sin}\:\theta \\ $$$$\frac{{dy}}{{d}\theta}=\mathrm{2}{a}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta \\ $$$${ds}=\sqrt{\left({dx}\right)^{\mathrm{2}} +\left({dy}\right)^{\mathrm{2}} } \\ $$$$=\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta\:\mathrm{cos}^{\mathrm{2}} \:\theta\:\left(\mathrm{9}\:\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{4}\right)}\:{d}\theta \\ $$$$=\frac{{a}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\mid\mathrm{sin}\:\mathrm{2}\theta\mid\sqrt{\mathrm{9}\:\mathrm{cos}\:\mathrm{2}\theta+\mathrm{17}}\:{d}\theta \\ $$$$ \\ $$$${the}\:{curve}\:{from}\:\theta=\pi\:{to}\:\mathrm{2}\pi\:{is}\:{the} \\ $$$${same}\:{as}\:{from}\:\theta=\mathrm{0}\:{to}\:\pi,\:{therefore} \\ $$$${i}\:{just}\:{calculate}\:{the}\:{length}\:{from} \\ $$$$\theta=\mathrm{0}\:{to}\:\pi. \\ $$$${s}=\int_{\mathrm{0}} ^{\pi} {ds} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ds} \\ $$$$=\frac{\mathrm{2}{a}}{\mathrm{2}\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}\:\mathrm{2}\theta\:\sqrt{\mathrm{9}\:\mathrm{cos}\:\mathrm{2}\theta+\mathrm{17}}\:{d}\theta \\ $$$$=\frac{{a}}{\:\mathrm{18}\sqrt{\mathrm{2}}}\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \sqrt{\mathrm{9}\:\mathrm{cos}\:\mathrm{2}\theta+\mathrm{17}}\:{d}\left(\mathrm{9}\:\mathrm{cos}\:\mathrm{2}\theta+\mathrm{17}\right) \\ $$$$=\frac{{a}}{\:\mathrm{18}\sqrt{\mathrm{2}}}×\frac{\mathrm{2}}{\mathrm{3}}\left[\left(\mathrm{9}\:\mathrm{cos}\:\mathrm{2}\theta+\mathrm{17}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \\ $$$$=\frac{{a}}{\:\mathrm{27}\sqrt{\mathrm{2}}}\left[\left(\mathrm{9}+\mathrm{17}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\left(−\mathrm{9}+\mathrm{17}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right] \\ $$$$=\frac{{a}}{\:\mathrm{27}\sqrt{\mathrm{2}}}×\left(\mathrm{26}^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{8}^{\frac{\mathrm{3}}{\mathrm{2}}} \right) \\ $$$$=\frac{{a}}{\:\mathrm{27}\sqrt{\mathrm{2}}}×\left(\mathrm{26}\sqrt{\mathrm{26}}−\mathrm{16}\sqrt{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{2}\left(\mathrm{13}\sqrt{\mathrm{13}}−\mathrm{8}\right){a}}{\:\mathrm{27}} \\ $$$$\approx\mathrm{2}.\mathrm{879}\:{a} \\ $$

Commented by mr W last updated on 24/Jun/22

Commented by mr W last updated on 25/Jun/22

length should be >2(√2)a=2.83a  s=2.879a seems to be correct.

$${length}\:{should}\:{be}\:>\mathrm{2}\sqrt{\mathrm{2}}{a}=\mathrm{2}.\mathrm{83}{a} \\ $$$${s}=\mathrm{2}.\mathrm{879}{a}\:{seems}\:{to}\:{be}\:{correct}. \\ $$

Commented by Tawa11 last updated on 25/Jun/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com