Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 172306 by mathocean1 last updated on 25/Jun/22

show that J=∫_0 ^(+∞) ((ln(t))/(t^2 +a^2 ))dt with a>0  is convergent

$${show}\:{that}\:{J}=\int_{\mathrm{0}} ^{+\infty} \frac{{ln}\left({t}\right)}{{t}^{\mathrm{2}} +{a}^{\mathrm{2}} }{dt}\:{with}\:{a}>\mathrm{0} \\ $$ $${is}\:{convergent} \\ $$

Answered by aleks041103 last updated on 25/Jun/22

(1/a^2 )∫_0 ^∞ ((ln(t)dt)/((t/a)^2 +1))=(1/a^2 )∫_0 ^∞ ((ln(ax)d(ax))/(x^2 +1))=  =(1/a)[∫_0 ^∞ ((ln(x)dx)/(1+x^2 ))+ln(a)∫_0 ^∞ (dx/(1+x^2 ))]=  =((πln(a))/(2a))+(1/a)∫_0 ^∞ ((ln(x)dx)/(1+x^2 ))=  =((πln(a))/(2a))+(1/a)I  I=∫_0 ^∞ ((ln(x)dx)/(1+x^2 ))=∫_0 ^∞ ((ln(x))/(1+(1/x)^2 )) (dx/x^2 )=  =∫_0 ^∞ ((−ln(1/x))/(1+(1/x)^2 ))d(−1/x)=∫_∞ ^0 ((ln(u)du)/(1+u^2 ))=−I  ⇒I=−I⇒I=0  ⇒J(a)=((πln(a))/(2a))  This is obviously finite for a>0.

$$\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({t}\right){dt}}{\left({t}/{a}\right)^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({ax}\right){d}\left({ax}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}= \\ $$ $$=\frac{\mathrm{1}}{{a}}\left[\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right){dx}}{\mathrm{1}+{x}^{\mathrm{2}} }+{ln}\left({a}\right)\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\right]= \\ $$ $$=\frac{\pi{ln}\left({a}\right)}{\mathrm{2}{a}}+\frac{\mathrm{1}}{{a}}\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right){dx}}{\mathrm{1}+{x}^{\mathrm{2}} }= \\ $$ $$=\frac{\pi{ln}\left({a}\right)}{\mathrm{2}{a}}+\frac{\mathrm{1}}{{a}}{I} \\ $$ $${I}=\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right){dx}}{\mathrm{1}+{x}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right)}{\mathrm{1}+\left(\mathrm{1}/{x}\right)^{\mathrm{2}} }\:\frac{{dx}}{{x}^{\mathrm{2}} }= \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \frac{−{ln}\left(\mathrm{1}/{x}\right)}{\mathrm{1}+\left(\mathrm{1}/{x}\right)^{\mathrm{2}} }{d}\left(−\mathrm{1}/{x}\right)=\int_{\infty} ^{\mathrm{0}} \frac{{ln}\left({u}\right){du}}{\mathrm{1}+{u}^{\mathrm{2}} }=−{I} \\ $$ $$\Rightarrow{I}=−{I}\Rightarrow{I}=\mathrm{0} \\ $$ $$\Rightarrow{J}\left({a}\right)=\frac{\pi{ln}\left({a}\right)}{\mathrm{2}{a}} \\ $$ $${This}\:{is}\:{obviously}\:{finite}\:{for}\:{a}>\mathrm{0}. \\ $$

Answered by Mathspace last updated on 25/Jun/22

I=_(t=ax) ∫_0 ^∞   ((lna+lnx)/(a^2 x^2 +a^2 ))adx  =((lna)/a)∫_0 ^∞  (dx/(x^2 +1)) +(1/a)∫_0 ^∞  ((lnx)/(x^2 +1))dx(→0)  =((lna)/a)×(π/2)=((πlna)/(2a))

$${I}=_{{t}={ax}} \int_{\mathrm{0}} ^{\infty} \:\:\frac{{lna}+{lnx}}{{a}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} }{adx} \\ $$ $$=\frac{{lna}}{{a}}\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{1}}\:+\frac{\mathrm{1}}{{a}}\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}\left(\rightarrow\mathrm{0}\right) \\ $$ $$=\frac{{lna}}{{a}}×\frac{\pi}{\mathrm{2}}=\frac{\pi{lna}}{\mathrm{2}{a}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com