Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 172307 by mathocean1 last updated on 25/Jun/22

Calculate   lim_(n→+∞) A_n =∫_0 ^1 (x^n /(1+x))dx

CalculateDouble subscripts: use braces to clarify

Answered by aleks041103 last updated on 25/Jun/22

A_n =∫_0 ^1 (x^n /(1−(−x)))dx=(−1)^n ∫_0 ^1 (((−x)^n −1+1)/(1−(−x)))dx=  =(−1)^(n+1) ∫_0 ^1 ((1−(−x)^n −1)/(1−(−x)))dx=  =(−1)^(n+1) [∫_0 ^1 ((1−(−x)^n )/(1−(−x)))dx−∫_0 ^1 (dx/(1+x))]=  =(−1)^(n+1) [∫_0 ^1 (Σ_(k=1) ^n (−x)^(k−1) )dx−ln(1+1)+ln(1+0)]=  =(−1)^(n+1) [Σ_(k=1) ^n (−1)^(k−1) (∫_0 ^1 x^(k−1) dx)−ln(2)]=  =(−1)^(n+1) [Σ_(k=1) ^n (((−1)^(k−1) )/k)−ln(2)]  (1/(1+x))=Σ_(k=0) ^∞ (−x)^k   ⇒∫_0 ^s (dx/(1+x))=ln(1+s)=Σ_(k=0) ^∞ (−1)^k (s^(k+1) /(k+1))=  ⇒ln(1+s)=Σ_(k=1) ^∞ (((−1)^(k−1) s^k )/k)  ⇒Σ_(k=1) ^n (((−1)^(k−1) )/k)=ln(2)−Σ_(k=n+1) ^∞ (((−1)^(k−1) )/k)  ⇒A_n =(−1)^n Σ_(k=n+1) ^∞ (((−1)^(k−1) )/k)  ⇒lim_(n→∞) A_n =0

An=01xn1(x)dx=(1)n01(x)n1+11(x)dx==(1)n+1011(x)n11(x)dx==(1)n+1[011(x)n1(x)dx01dx1+x]==(1)n+1[01(nk=1(x)k1)dxln(1+1)+ln(1+0)]==(1)n+1[nk=1(1)k1(01xk1dx)ln(2)]==(1)n+1[nk=1(1)k1kln(2)]11+x=k=0(x)k0sdx1+x=ln(1+s)=k=0(1)ksk+1k+1=ln(1+s)=k=1(1)k1skknk=1(1)k1k=ln(2)k=n+1(1)k1kAn=(1)nk=n+1(1)k1kDouble subscripts: use braces to clarify

Answered by Mathspace last updated on 25/Jun/22

A_n =∫_R^+     (x^n /(1+x))χ_([0,1])  (x)dx  =∫_R^+    f_n (x)dx  f_m converge simplement vers0  car x ∈[0,1]  and f_n est dominee par  g(x)=(1/(1+x)) ⇒lim A_n =∫_R^+   lim f_n =0

An=R+xn1+xχ[0,1](x)dx=R+fn(x)dxfmconvergesimplementvers0carx[0,1]andfnestdomineeparg(x)=11+xlimAn=R+limfn=0

Answered by puissant last updated on 25/Jun/22

 0≤x≤1         ⇒       1≤1+x≤2   on a :  (x^n /2)≤ (x^n /(1+x))≤x^n   ⇒ (1/2)∫_0 ^1 x^n dx ≤ I_n ≤∫_0 ^1 x^n dx  ⇒ (1/(2(n+1))) ≤ I_n ≤ (1/(n+1))  donc lim_(n→+∞) I_n =0   d′apres le theoreme des gendarmes..

0x111+x2ona:xn2xn1+xxn1201xndxIn01xndx12(n+1)In1n+1donclimn+In=0dapresletheoremedesgendarmes..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com